Penerapan Teknik Neural Network dalam memprediksi Perkembangan Impor Kelompok Industri Tekstil dengan Metode Backpropagation
DOI:
https://doi.org/10.47065/jimat.v3i1.252Keywords:
Forecasting; Industry Group; Backpropagation; Architectural Model; IndonesiaAbstract
The aim of this research is to analyze the development of the textile industry group in Indonesia using Artificial Intelligence. The analysis is conducted through a predictive model that will be used to predict the import development of the textile industry group. The dataset is sourced from the Indonesian Central Bureau of Statistics through the website https://www.bps.go.id/. The technique used is neural network with backpropagation method, and the analysis is conducted using Matlab. Backpropagation is a training method that has a target to be sought. This method is also a multilayer method, which has input, hidden, and output layers. The research process consists of two stages, namely the training stage and the testing stage. Out of several architecture models tested (3-10-1, 3-25-1, 3-50-1, 3-80-1, and 3-100-1), the best architecture model obtained is 3-100-1 with an MSE of 0.000999996 and an accuracy value of 100 percent.
Downloads
References
I. G. Fauzi, I. N. Sari, R. Ananda, and M. D. P. Gultom, “Industri Tekstil,” pp. 1–30, 2019.
F. Zola, “Jaringan Syaraf Tiruan Menggunakan Algoritma Backpropagation Untuk Memprediksi Prestasi Siswa,” Jurnal Teknologi Dan Open Source, vol. 1, no. 1, pp. 58–72, 2018, doi: 10.36378/jtos.v1i1.12.
H. Aini, H. Haviluddin, E. Budiman, M. Wati, and N. Puspitasari, “Prediksi Produksi Minyak Kelapa Sawit Menggunakan Metode Backpropagation Neural Network,” Sains, Aplikasi, Komputasi dan Teknologi Informasi, vol. 1, no. 1, p. 24, 2019, doi: 10.30872/jsakti.v1i1.2261.
K. Wong, A. P. Wibawa, H. S. Pakpahan, A. Prafanto, and H. J. Setyadi, “Prediksi Tingkat Inflasi Dengan Menggunakan Metode Backpropagation Neural Network,” Sains, Aplikasi, Komputasi dan Teknologi Informasi, vol. 1, no. 2, p. 8, 2019, doi: 10.30872/jsakti.v1i2.2600.
A. P. Windarto, M. R. Lubis, and S. Solikhun, “Implementasi JST pada Prediksi Total Laba Rugi Komprehensif Bank Umum dan Konvensional dengan Backpropagation,” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 5, no. 4, p. 411, 2018, doi: 10.25126/jtiik.201854767.
Iskandar, S. Xu, and G. O’Donovan, “Revolusi Industri 4.0 dalam Pengelolaan Kas Negara: Pemodelan Prakiraan Kas Negara Menggunakan Jaringan Saraf Tiruan,” Simposium Nasional Keuangan Negara, vol. 1, no. 1, pp. 821–825, 2018.
B. S. Mózo, “Transaksi,” Journal of Chemical Information and Modeling, vol. 53, no. 9, pp. 1689–1699, 2017.
E. Hartato, D. Sitorus, and A. Wanto, “Analisis Jaringan Saraf Tiruan Untuk Prediksi Luas Panen Biofarmaka Di Indonesia,” SemanTIK, vol. 4, no. 1, pp. 49–56, 2018.
A. Pujianto, K. Kusrini, and A. Sunyoto, “Perancangan Sistem Pendukung Keputusan Untuk Prediksi Penerima Beasiswa Menggunakan Metode Neural Network Backpropagation,” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 5, no. 2, p. 157, 2018, doi: 10.25126/jtiik.201852631.
A. N. Rahmah, S. Subiyanto, and F. J. Amarrohman, “Pemodelan Perubahan Penggunaan Lahan Dengan Artificial Neural Network (Ann) Di Kota Semarang,” Jurnal Geodesi UNDIP, vol. 9, no. 1, pp. 197–206, 2019.
J. Sinurat, “Bulletin of Information Technology (BIT) Jaringan Saraf Tiruan Diagnosa Penyakit Kanker Paru-Paru Menggunakan Metode Hebb Rule,” Bulletin of Information Technology (BIT), vol. 2, no. 1, pp. 20–27, 2021.
B. Febriadi, Z. Zamzami, Y. Yunefri, and A. Wanto, “Bipolar function in backpropagation algorithm in predicting Indonesia’s coal exports by major destination countries,” IOP Conference Series: Materials Science and Engineering, vol. 420, no. 1, 2018, doi: 10.1088/1757-899X/420/1/012087.
A. Wanto, J. Na’am, Yuhandri, A. P. Windarto, and Mesran, “Analisis Penurunan Gradien dengan Kombinasi Fungsi Aktivasi pada Algoritma JST untuk Pencarian Akurasi Terbaik,” Jurnal Media Informatika Budidarma, vol. 4, no. 2018, pp. 1197–1205, 2020, doi: 10.30865/mib.v4i4.2509.
Budiharjo, T. Soemartono, A. P. Windarto, and T. Herawan, “Predicting School Participation in Indonesia using Back-Propagation Algorithm Model,” International Journal of Control and Automation, vol. 11, no. 11, pp. 57–68, 2018.
A. P. Windarto, J. Na, and A. Wanto, “Bagian 2?: Model Arsitektur Neural Network dengan Kombinasi K- Medoids dan Backpropagation pada kasus Pandemi COVID-19 di Indonesia,” Jurnal Media Informatika Budidarma, vol. 4, no. 4, pp. 1175–1180, 2020, doi: 10.30865/mib.v4i4.2505.
Budiharjo, T. Soemartono, A. P. Windarto, and T. Herawan, “Predicting tuition fee payment problem using backpropagation neural network model,” International Journal of Advanced Science and Technology, vol. 120, pp. 85–96, 2018, doi: 10.14257/ijast.2018.120.07.
F. A. Hizham, Y. Nurdiansyah, and D. M. Firmansyah, “Implementasi Metode Backpropagation Neural Network (BNN) dalam Sistem Klasifikasi Ketepatan Waktu Kelulusan Mahasiswa (Studi Kasus: Program Studi Sistem Informasi Universitas Jember),” Berkala Sainstek, vol. 6, no. 2, p. 97, 2018, doi: 10.19184/bst.v6i2.9254.
A. Wanto et al., “Model of Artificial Neural Networks in Predictions of Corn Productivity in an Effort to Overcome Imports in Indonesia,” Journal of Physics: Conference Series, vol. 1339, no. 1, 2019, doi: 10.1088/1742-6596/1339/1/012057.
I. R. Supriyanto, Sunardi, “Penerapan JST Backpropagation untuk Prediksi Siswa Penerima Bantuan,” Jurnal Media Informatika Budidarma, vol. 6, no. 338, p. 8368, 2022, doi: 10.30865/mib.v6i2.3870.
A. Rijali, “Analisis Data Kualitatif,” Alhadharah: Jurnal Ilmu Dakwah, vol. 17, no. 33, p. 81, 2019, doi: 10.18592/alhadharah.v17i33.2374.
P. K. A. Layuk and C. D. Matani, “Analisis Realisasi Anggaran Pendapatan Dan Belanja Daerah Pemerintah Kabupaten Pegunungan Bintang,” Jurnal Kajian Ekonomi dan Keuangan Daerah, vol. 4, no. 1, pp. 33–43, 2019.
N. A. Ramadhanty, U.- Farouk, and S.- Poerbo, “The Influence of International Coffee Prices and Rupiah Exchange Rate on Export Volume of Coffee in Central Java,” JOBS (Jurnal Of Business Studies), vol. 7, no. 1, p. 15, 2022, doi: 10.32497/jobs.v7i1.3633.
F. G. Becker et al., “No ????????????????????? ?????????????????Title,” Syria Studies, vol. 7, no. 1, pp. 37–72, 2015.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Penerapan Teknik Neural Network dalam memprediksi Perkembangan Impor Kelompok Industri Tekstil dengan Metode Backpropagation
ARTICLE HISTORY
Issue
Section
Copyright (c) 2023 Ranjani, Suci Cahya Mita, Agus Perdana Windarto

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).