Penerapan Metode Adaptie Neuro Fuzzy Inference dalam Memprediksi Penjualan Buku
DOI:
https://doi.org/10.47065/jimat.v2i1.153Keywords:
ANFIS; Prediction; Sales; Books; PT. Tiga Serangkai Pustaka Mandiri PematangsiantarAbstract
The increase in sales of items or product componies continues to increase based on the needs of the community. With the increase in sales will greatly affect the income of a company. So a mature sales strategy is needed. The number of visitors has a great influence on sales transactions. The more visitors, the more likely the transaction can be predicted. The number of visitors every day is different and has an unequal percentage in making sales transactions. One way to increase sales revenue is to predict sales based on the average number of stock so that sales strategy planning can be right on target. Related to this, the author conducts research to predict the number of book sales based on the pattern that occurs from the number of book stock at PT. Tiga Serangkai Pustaka Mandiri Pematangsiantar. By applying the Adaptive Neuro Fuzzy Inference System (ANFIS) method in predicting book sales in 2018-2020. The amount of data used is 36 data, divided into training data (23 data) and testing (13 data) using 2 input variables namely orders and stock, 1 input variable is sales. In testing with matlab software, the training process uses mf trimf with 9 rules which produces the smallest error value of 1.045 at epoch 36, with an accuracy rate of 57%
Downloads
References
A. Setiawan, I. F. Astuti, and A. H. Kridalaksana, “Klasifikasi Dan Pencarian Buku Referensi Akademik Menggunakan Metode Naïve Bayes Classifier (NBC) (Studi Kasus: Perpustakaan Daerah Provinsi Kalimantan Timur),” Inform. Mulawarman J. Ilm. Ilmu Komput., vol. 10, no. 1, p. 1, 2016, doi: 10.30872/jim.v10i1.17.
E. T. Marjiyono, Bambang Soedijono WA, Luthfi, “PENGGUNAAN JARINGAN SYARAF TIRUAN UNTUK MERAMALKAN PERMINTAAN PADA PERUSAHAAN RETAIL,” vol. 2, no. 2009, 2018.
Y. Andriani, H. Silitonga, and A. Wanto, “Analisis Jaringan Syaraf Tiruan untuk prediksi volume ekspor dan impor migas di Indonesia,” vol. 4, no. 1, pp. 30–40, 2018.
A. Virrayyani and S. Sutikno, “Prediksi Penjualan Barang Menggunakan Metode Adaptive Neuro-Fuzzy Inference System (ANFIS),” Khazanah Inform. J. Ilmu Komput. dan Inform., vol. 2, no. 2, p. 57, 2016, doi: 10.23917/khif.v2i2.2554.
A. Sudarsono, “JARINGAN SYARAF TIRUAN UNTUK MEMPREDIKSI LAJU PERTUMBUHAN PENDUDUK MENGGUNAKAN METODE,” vol. 12, no. 1, pp. 61–69, 2016.
J. R. S. Panggabean, Erwin, “Analisa perbandingan metode jaringan syaraf tiruan dengan metode sistem pendukung keputusan untuk penerimaan tenaga kerja,” vol. 4, no. 1, pp. 2–7, 2019.
H. S. Tambunan, “PENGENALAN POLA HIV DAN AIDS MENGGUNAKAN ALGORITMA KOHONEN PADA JARINGAN SYARAF,” vol. 1, no. 1, pp. 65–69, 2016.
Y. Muharni, “MODEL PREDIKSI PRODUCTION DELAY DALAM PROSES PRODUKSI STRIP MILL DENGAN METODE ADAPTIVE NEURO- FUZZY INFERENCE SYSTEM,” Ind. Serv., vol. 3, no. 2, pp. 140–144, 2018.
E. Irawan, M. Zarlis, and E. B. Nababan, “ANALISIS PENAMBAHAN NILAI MOMENTUM PADA PREDIKSI BACKPROPAGATION,” vol. 1, no. 2, pp. 84–89, 2017.
Nur Adil Darmawand, “Prediksi Suku Bunga Acuan (BI RATE) Menggunakan Metode Adaptive Neuro Fuzzy Inference System (ANFIS),” 2018.
D. fitra Maharani, “PERAMALAN PENJUALAN KORAN MENGGUNAKAN ADAPTIF NEURO FUZZY INFERENCE SYSTEM (ANFIS),” 2018.
A. T. Solikhun, M. Safii, “JARINGAN SARAF TIRUAN UNTUK MEMPREDIKSI TINGKAT PEMAHAMAN SISIWA TERHADAP MATAPELAJARAN DENGAN MENGGUNAKAN ALGORITMA BACKPROPAGATION Solikhun,” J. Sains Komput. Inform., vol. 1, no. 1, pp. 24–36, 2017.
S. Andriyani and N. Sihombing, “Implementasi Metode Backpropagation Untuk Prediksi Harga Jual Kelapa Sawit Berdasarkan Kualitas Buah,” Jurteksi, vol. 4, no. 2, pp. 155–164, 2018, doi: 10.33330/jurteksi.v4i2.40.
H. Herman, “Analisis finansial dan keuntungan yang hilang dari pengurangan emisi karbon dioksida pada perkebunan kelapa sawit,” J. Penelit. dan Pengemb., vol. 28, no. 4, pp. 127–133, 2009.
J. Prayudha, Purwadi, and I. Mariami, “Implementasi Jaringan Syaraf Tiruan Dalam Memprediksi Hasil Perkebunan Dengan Metode Backpropagation,” Semin. Nas. Sains Teknol. Inf., pp. 441–445, 2019.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Penerapan Metode Adaptie Neuro Fuzzy Inference dalam Memprediksi Penjualan Buku
ARTICLE HISTORY
Issue
Section
Copyright (c) 2022 Zulfia Darma, Agus Perdana Windarto, Dedi Suhendro

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).