Sistem Klasifikasi Kelayakan Penerima Bantuan Langsung Tunai Menggunakan Metode K-Nearest Neighbor (KNN) Berbasis Website
DOI:
https://doi.org/10.47065/jimat.v5i3.702Keywords:
Classification; BLT (Direct Cash Assistance); K-Nearest Neighbor (K-NN)Abstract
Poverty is the condition of a person's inability to fulfill the basic needs of life, which is often measured by income that is lower than the average in a region. In Indonesia, the poverty rate, including in Kabupaten Jombang, continued to increase from 2012 to 2017, with various government efforts to overcome this through social programs such as BLT (Direct Cash Assistance), Community Health Insurance, and the Family Hope Program (PKH). However, despite these programs, the data collection process for beneficiaries in some areas, such as Tanah Periuk Village, is still done manually, causing inaccurate targeting in the provision of assistance. For this reason, a more efficient solution is needed in determining the eligibility of beneficiaries. One of the technologies that can be used is data mining, especially the classification method, to analyze beneficiary data based on certain criteria. This research uses the K-Nearest Neighbor (K-NN) algorithm to build a classification system for the eligibility of direct cash transfer recipients in Tanah Periuk Village, with the aim of improving accuracy and efficiency in the beneficiary selection process. This system is web-based, which allows ease of processing and updating data centrally. The results of this study provide eligibility scores for BLT (Direct Cash Assistance) recipients based on the criteria provided. The criteria that are assessed are: House Condition, Income, Occupation and Number of Dependents. One of the families who “DESERVE” to receive assistance is Martina with semi-permanent house conditions, an income of IDR 1,000,000/month, a housewife's job, and 3 dependents.
Downloads
References
R. C. W. Vidya Capristyan Pamungkas1, Lailil Muflikhah2, “Klasifikasi Penerimaan Program Keluarga Harapan ( PKH ) Menggunakan Metode Learning Vector Quantization ( Studi Kasus Desa Kedungjati ),” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 3, pp. 2659–2666, 2019.
N. F. Kahar, L. Hadjaratie, S. Suhada, and I. R. Padiku, “Implementasi Data Mining Dalam Penentuan Tingkat Kemiskinan Menggunakan Fuzzy C-Means,” J. Informatics, vol. 9, no. 1, pp. 27–36, 2022.
Y. R. Sari, A. Sudewa, D. A. Lestari, and T. I. Jaya, “Penerapan Algoritma K- Means Untuk Clustering Data Kemiskinan Provinsi Banten Menggunakan Rapidminer,” CESS (Journal Comput. Eng. Syst. Sci., vol. 5, no. 2, pp. 192–198, 2020.
I. Teknologi, N. N. F. R, D. S. Anggraeni, and U. Enri, “Pengelompokkan Data Kemiskinan Provinsi Jawa Barat Menggunakan Algoritma K-Means dengan Silhouette Coefficient West Java Province Poverty Data Grouping Using the K-Means Algorithm with Silhouette Coefficient,” Temat. J. Teknol. Inf. Komun., vol. 5, pp. 29–35, 2023.
B. G. Sudarsono, M. I. Leo, A. Santoso, and F. Hendrawan, “Analisis Data Mining Data Netflix Menggunakan Aplikasi Rapid Miner,” JBASE - J. Bus. Audit Inf. Syst., vol. 4, no. 1, pp. 13–21, 2021, doi: 10.30813/jbase.v4i1.2729.
R. Baji Syadewo and N. Riza, “Klasifikasi Penerimaan Dana Bantuan Pada Dusun Jati Bening,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 2, pp. 1220–1226, 2023, doi: 10.36040/jati.v7i2.6766.
D. A. I. M. Fatiya Nur Umma, Budi Warsito, “Klasifikasi status kemiskinan rumah tangga dengan algoritma c5.0 di kabupaten pemalang,” J. GAUSSIAN, vol. 10, no. 2, pp. 221–229, 2021.
P. N. Hendayanti and M. Nurhidayati, “Klasifikasi Tingkat Keparahan Kemiskinan Provinsi Di Indonesia Dengan Analisis Diskriminan 1ni,” J. Mat. dan Pendidik. Mat., vol. 5, no. 1, pp. 14–21, 2021.
H. W. Azizah, O. Nurdiawan, G. Dwilestari, K. Kaslani, and E. Tohidi, “Klasifikasi Pemberian Bantuan UMKM Cirebon dengan Menggunakan Algoritma K-Nearest Neighbor,” J. Comput. Syst. Informatics, vol. 3, no. 3, pp. 110–115, 2022, doi: 10.47065/josyc.v3i3.1392.
P. Pahrudin and K. Harianto, “Penerapan Algoritma K-Nearest Neighbor Untuk Klasifikasi Warga Penerima Bantuan Sosial,” Build. Informatics, Technol. Sci., vol. 4, no. 3, pp. 1241–1245, 2022, doi: 10.47065/bits.v4i3.2276.
Ardi Ramdani, Christian Dwi Sofyan, Fauzi Ramdani, Muhamad Fauzi Arya Tama, and Muhammad Angga Rachmatsyah, “Algoritma Klasifikasi Data Mining Untuk Memprediksi Masyarakat Dalam Menerima Bantuan Sosial,” J. Ilm. Sist. Inf., vol. 1, no. 2, pp. 39–47, 2022, doi: 10.51903/juisi.v1i2.363.
A. Triayudi, “Penerapan Data Mining Untuk Klasifikasi Penerima Dana Bantuan Sosial Dengan Menggunakan Algoritma K-Nearest Neighbor,” Build. Informatics, Technol. Sci., vol. 5, no. 2, pp. 532–542, 2023, doi: 10.47065/bits.v5i2.3972.
W. W. Arupandani, F. Taufik, and R. Mahyuni, “Implementasi Data Mining Menentukan Penerimaan Bantuan Sosial Pangan (BSP) Menggunakan Algoritma C4.5,” J. Sist. Inf. Triguna Dharma (JURSI TGD), vol. 2, no. 5, pp. 705–751, 2023, doi: 10.53513/jursi.v2i5.5612.
H. J. Tri Yuli Pahtoni, “Analisis Sentimen Data Twitter Terkait Chatgpt Menggunakan Orange Data Mining,” J. Teknol. Inf. dan Ilmu Komput., vol. 11, no. 2, pp. 329–336, 2024, doi: 10.25126/jtiik.20241127276.
E. Elmayati, D. F. Handayani, H. O. L. Wijaya, and B. Aktavera, “Forecasting Tingkat Kepuasan Siswa Terhadap Proses Pembelajaran Menggunakan Metode K-Nearest Neighbor,” J. Pengemb. Sist. Inf. dan Inform., vol. 4, no. 3, pp. 41–52, 2023, doi: 10.47747/jpsii.v4i3.1659.
A. Tangkelayuk, “The Klasifikasi Kualitas Air Menggunakan Metode KNN, Naïve Bayes, dan Decision Tree,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 9, no. 2, pp. 1109–1119, 2022, doi: 10.35957/jatisi.v9i2.2048.
P. Putra, A. M. H. Pardede, and S. Syahputra, “Analisis Metode K-Nearest Neighbour (KNN) Dalam Klasifikasi Data Iris Bunga,” J. Tek. Inform. Kaputama, vol. 6, no. 1, pp. 297–305, 2022.
A. Fadhila Tangguh Admojo, “Klasifikasi Aroma Alkohol Menggunakan Metode KNN,” Indones. J. Data Sci., vol. 1, no. 2, pp. 34–38, 2020, doi: 10.33096/ijodas.v1i2.12.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Sistem Klasifikasi Kelayakan Penerima Bantuan Langsung Tunai Menggunakan Metode K-Nearest Neighbor (KNN) Berbasis Website
ARTICLE HISTORY
Issue
Section
Copyright (c) 2025 Dewi Sriwani, Lukman Hakim, Nelly Khairani Daulay, Asep Toyib Hidayat

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).