Segmentasi Produk Fashion Berdasarkan Harga, Ukuran, dan Merek Menggunakan K-Means di Rapidminer
DOI:
https://doi.org/10.47065/jimat.v5i3.651Keywords:
Fashion Industry; Product Segmentation; Clustering; K-Means; Elbow Method; RapidMinerAbstract
Tight competition and product diversity are the hallmarks of the fashion industry, especially in terms of price variation, size, and brand. To help the process of making more accurate business decisions, product segmentation is needed to identify the characteristics of each group. This study utilizes the K-Means Clustering algorithm to group fashion products based on these attributes. The implementation is carried out using the RapidMiner platform, starting with the data normalization stage and the transformation of categorical attributes into numeric form. The optimal number of clusters is determined through the elbow method approach, which shows a significant decrease in the average distance between data in the cluster. The clustering results show the formation of product groups with different characteristics, which can be utilized in stock planning and marketing strategies. This study confirms that the K-Means algorithm is effective in analyzing the distribution of fashion products based on the main attributes they have.
Downloads
References
N. Lee and S. Suh, “How Does Digital Technology Inspire Global Fashion Design Trends? Big Data Analysis on Design Elements,” Applied Sciences (Switzerland), vol. 14, no. 13, 2024, doi: 10.3390/app14135693.
V. Schiaroli, L. Fraccascia, and R. M. Dangelico, “How can consumers behave sustainably in the fashion industry? A systematic literature review of determinants, drivers, and barriers across the consumption phases,” J Clean Prod, vol. 483, no. February 2023, p. 144232, 2024, doi: 10.1016/j.jclepro.2024.144232.
P. Centobelli, S. Abbate, S. P. Nadeem, and J. A. Garza-Reyes, “Slowing the fast fashion industry: An all-round perspective,” Curr Opin Green Sustain Chem, vol. 38, p. 100684, 2022, doi: 10.1016/j.cogsc.2022.100684.
A. Dwi Gitania, K. Adji Kusuma, M. Hariasih, J. Lebo No, K. Sidoarjo, and J. Timur, “Pengaruh Kualitas Produk, E-Commerce, Brand Image dan Harga Terhadap Keputusan Pembelian Melalui Minat Beli,” Journal of Business and Economics Research (JBE), vol. 6, no. 2, pp. 393–407, 2025, doi: 10.47065/jbe.v6i2.7140.
G. E. Putri, “Faktor-Faktor Mempengaruhi Keputusan Pembelian Produk Fashion Secara Online Melalui E-Commerce,” Jurnal Universitas Negeri Yogyakarta, vol. 16, no. 1, pp. 1–8, 2021.
M. Mathew and R. Spinelli, “Decoding sustainable drivers: A systematic literature review on sustainability-induced consumer behaviour in the fast fashion industry,” Sustain Prod Consum, vol. 55, no. February, pp. 132–145, 2025, doi: 10.1016/j.spc.2025.02.011.
A. F. Rahmawati, N. Farida, and Ngatno, “Pengaruh Brand Prestige dan Perceived Quality Terhadap Purchase Intention Melalui Brand Attitude,” Jurnal Ilmu Administrasi Bisnis, vol. 12, no. 1, pp. 131–139, 2023, [Online]. Available: https://ejournal3.undip.ac.id/index.php/jiab%0A%7C
R. Jorgie, L. Batu, N. Simatupang, and A. H. Lubis, “Segmentasi Pelanggan Belanja Daring berdasarkan Click-ad dengan Algoritma K-means,” vol. 3, no. 1, pp. 304–312, 2025.
D. Nopriyani, H. Rohayani, and Z. Akbar, “Penerapan Algoritma K-Means untuk Mengidentifikasi Pola Penjualan Frozen Food yang Paling Populer,” Bulletin of Computer Science Research, vol. 5, no. 1, pp. 98–104, 2024, doi: 10.47065/bulletincsr.v5i1.445.
Mediana Rahmatika, Muharia, Tasya Salsabila, and Vicky F Sanjaya, “Analisis Swot Dalam Pengembangan Strategi Pemasaran Pada Produk Fashion Toko Zelora Lampung,” Jurnal Akuntansi dan Manajemen, vol. 35, no. 3, pp. 213–234, 2024, doi: 10.53916/jam.v35i3.146.
R. F. Ramadhan, S. Hadi Wijoyo, and M. C. Saputra, “Penerapan Metode K-Means Clustering pada Ulasan Perumahan PT XYZ di Google Maps untuk Formulasi Strategi Bisnis dengan Analisis SWOT,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 7, no. 6, pp. 2879–2888, 2023, [Online]. Available: http://j-ptiik.ub.ac.id
M. Agustriya, M. Ula, and K. -, “Analisis Kinerja Algoritma Klasifikasi Naïve Bayes Menggunakan Genetic Algorithm dan Bagging untuk Data Publik Risiko Transaksi Kartu Kredit,” Jurnal Sistem dan Teknologi Informasi (JustIN), vol. 12, no. 3, p. 584, 2024, doi: 10.26418/justin.v12i3.80136.
N. Wakhidah, “Penerapan Data Mining K-Means Clustering Untuk,” Jurnal Transformatika, vol. 8, no. 1, pp. 45–52, 2010.
A. L. M. Tampubolon, T. M. E. Y. Butar Butar, and S. Rochimah, “Segmentasi Pelanggan Majalah pada Situs Web E-Commerce dengan K-Means++ dan Metode RFM,” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 11, no. 6, pp. 1243–1252, 2024, doi: 10.25126/jtiik.2024118208.
S. R. Agustin, I. Purnamasari, and B. N. Sari, “Implementasi K-Means Untuk Pengelompokan Kategori Penjualan Barang Berbasis Web,” Journal of Informatics Management and Information Technology, vol. 5, no. 3, pp. 167–176, 2025, doi: 10.47065/jimat.v5i3.610.
E. O. A. B. Nasution and I. Imsar, “Pengaruh Faktor Budaya Dan Penggunaan Media Sosial Terhadap Perilaku Konsumen Dalam Konsumsi Produk Halal Roti Ketawa Sambo Cap Ayam Roket Di Kota Pematangsiantar,” EKOMBIS REVIEW: Jurnal Ilmiah Ekonomi dan Bisnis, vol. 11, no. 2, pp. 1981–1996, 2023, doi: 10.37676/ekombis.v11i2.6810.
W. N. Annisyak and Ali, “Pengaruh Citra Merek, Strategi Pemasaran Media Sosial, dan Minat Beli Terhadap Keputusan Pembelian,” Journal of Business and Economics Research (JBE), vol. 6, no. 1, pp. 225–233, 2025, doi: 10.47065/jbe.v6i1.6766.
R. S. Nurhalizah, R. Ardianto, and P. Purwono, “Analisis Supervised dan Unsupervised Learning pada Machine Learning: Systematic Literature Review,” Jurnal Ilmu Komputer dan Informatika, vol. 4, no. 1, pp. 61–72, 2024, doi: 10.54082/jiki.168.
W. Alfian, K. -, and T. Hidayat, “Analisis Clustering Pegawai Berdasarkan Tingkat Kedisiplinan Menggunakan Algoritma K-Means dan Davies-Bouldin Index,” Journal of Electrical Engineering and Computer (JEECOM), vol. 6, no. 2, pp. 437–448, 2024, doi: 10.33650/jeecom.v6i2.9556.
A. Rajsya and A. Rachman, “Rancang Bangun Penerapan Metode Elbow Pada K-Means Untuk Clustering Data Persediaan Barang,” Literatur Informatika & Komputer, vol. 1, no. 4, pp. 395–403, 2024.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Segmentasi Produk Fashion Berdasarkan Harga, Ukuran, dan Merek Menggunakan K-Means di Rapidminer
ARTICLE HISTORY
Issue
Section
Copyright (c) 2025 Ival Sanjaya, Nitami Evita Inonu, Muhammad Fahmi Fudholi, Adelia Pratiwi, Heni Sulistiani

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).