Implementasi K-Means Untuk Pengelompokan Kategori Penjualan Barang Berbasis Web
DOI:
https://doi.org/10.47065/jimat.v5i3.644Keywords:
Clustering; CodeIgniter; K-Means; Product Grouping; SDLCAbstract
Harto Joyo Store faces challenges in inventory management due to manual recording processes. The main issue in managing sales data lies in the difficulty of grouping products based on sales patterns to support marketing strategies. This research aims to design and develop a web-based system capable of clustering products using the K-Means Clustering algorithm. The system was developed using the System Development Life Cycle (SDLC) with the Waterfall model, utilizing a dataset of 1,630 sales records from February 2023 to January 2024. The data was processed through the Knowledge Discovery in Databases (KDD) stages, which include Data Selection, Data Preprocessing, Data Transformation, Data Mining, and Knowledge Interpretation/Evaluation. The clustering process resulted in three data groups (Cluster 1 with 9 records, Cluster 2 with 191 records, and Cluster 3 with 28 records), with the number of clusters determined using the Elbow method. Cluster 1 represents best-selling products that require a high stock level, Cluster 2 includes low-demand products with minimal stock needs, and Cluster 3 consists of moderately-selling products that require a balanced inventory level. Evaluation using the Davies-Bouldin Index (DBI) yielded a DBI score of 0.356 for K=3, indicating optimal clustering results as it approaches zero. Initial testing shows that the system accurately classifies products into several sales clusters and can be used as a basis for business decision-making. This research contributes by providing a sales analysis system that can be integrated with the company’s information system. The analysis reveals that low-selling products dominate the data, suggesting that Harto Joyo Store should implement marketing strategies such as discounts or promotions to boost sales.
Downloads
References
Achray, "Implementasi Algoritma K-Means Untuk Mengelompokkan Data Penjualan Mobil Di PT.Honda Arista Manga Dua," Universitas Satya Negara Indonesia, Jakarta, 2020.
S. Astuti, "Algoritma K-Means Dalam Menentukan Penerima Beasiswa UPZ (Unit Pengumpulan Zakat) Pada Mahasiswa UIN Sumatera Utara Medan," UIN Sumatera Utara, Medan, 2020.
Prasetya, R. Salkiawati, and A. D. Alexander, "Analisis Cluster K-Means Dengan Metode Elbow Untuk Menentukan Pola Penjualan Produk Traffic Room Summarecon Mal Bekasi," Journal of Students Research in Computer Science, vol. 4, no. 1, pp. 105-108, 2023.
F. M. Adiansyah, "Aplikasi Algoritma K-Means Untuk Menentukan Persediaan Barang Berbasis Web Dengan Framework Laravel," Universitas Mercu Buana, Jakarta, 2020.
E. Muningsih, I. Maryani, and V. R. Handayani, "Penerapan metode K-Means dan optimasi jumlah cluster dengan index Davies Bouldin untuk clustering propinsi berdasarkan potensi desa," Jurnal Sains dan Manajemen, vol. 9, no. 1, pp. 96, 2021.
F. Hidayat, Konsep Pengembangan Sistem Informasi Kesehatan. Yogyakarta: Deepublish, 2020.
Y. A. Mustika, A. Manuhutu, N. Ahmad, I. Hasbi, Guntoro, M. A. Manuhutu, M. Ridwan, Hozairi, A. K. Wardhani, S. Alim, I. Romli, Y. Religia, D. T. Ocafian, U. U. Sufandi, dan I. Ernawati, Data Mining dan Aplikasinya. Bandung: Widina Bhakti Persada Bandung, 2021.
E. Bulolo, Data Mining untuk Perguruan Tinggi. Yogyakarta: Deepublish, 2020.
F. Marisa, A. L. Maukaar, dan T. M. Akhriza, Data Mining: Konsep dan Penerapannya. Sleman: Deepublish, 2021.
Rahayu, P. Wibawa, I. G. I. Sudipa, Suryani, A. Surachman, A. Ridwan, I. G. M. Daarmawiguna, M. N. Sutoyo, I. Slamet, S. Harlina, dan I. M. D. Maysanjaya, Data Mining. Jambi: PT Sonpedia Publishing Indonesia, 2024.
W. T. Wu, Y. J. Li, A. Z. Feng, L. Li, T. Huang, A. D. Xu, dan J. Lyu, "Data Mining in Clinical Big Data: The Frequently Used Databases, Steps, and Methodological Models," Military Medical Research, vol. 8, pp. 1–12, 2021.
C. Rianto dan S. Bunyamin, Panduan Pembuatan Aplikasi Clustering Gangguan Jaringan Menggunakan Metode K-Means Clustering. Bandung: Kreatif Industri Nusantara, 2020.
G. D. Nursyafitri, "K-Means Clustering, Salah Satu Contoh Teknik Analisis Data Populer," DQLab, 2022. [Online]. Tersedia: https://dqlab.id/k-means-clustering-salah-satu-contoh-teknik-analisis-data-populer
R. R. Muhima, M. Kurniawan, S. R. Wardhana, A. Yudhana, Sunardi, W. M. Rahmawati, dan G. E. Yuliastuti, Kupas Tuntas Algoritma Clustering: Konsep, Perhitungan Manual, dan Program. Yogyakarta: Penerbit ANDI, 2021.
M. Sholeh dan K. Aeni, "Perbandingan Evaluasi Metode Davies Bouldin, Elbow dan Silhouette pada Model Clustering dengan Menggunakan Algoritma K-Means," STRING (Satuan Tulisan Riset dan Inovasi Teknologi), vol. 8, no. 1, pp. 56–65, 2023.
M. Orisa, "Optimasi Cluster Pada Algoritma K-Means," SENIATI, vol. 6, no. 2, pp. 430–437, 2022.
Y. A. Mustika, A. Manuhutu, N. Ahmad, I. Hasbi, Guntoro, M. A. Manuhutu, M. Ridwan, Hozairi, A. K. Wardhani, S. Alim, I. Romli, Y. Religia, D. T. Ocafian, U. U. Sufandi, dan I. Ernawati, Data Mining dan Aplikasinya. Bandung: Widina Bhakti Persada Bandung, 2021.
N. A. Maori dan E. Evanita, "Metode Elbow dalam Optimasi Jumlah Cluster pada K-Means Clustering," Simetris: Jurnal Teknik Mesin, Elektro dan Ilmu Komputer, vol. 14, no. 2, pp. 277–288, 2023. doi: 10.24176/simet.v14i2.9630.
D. Gustian, S. Fahmi, dan N. D. Arianti, Menggali Emas Terpendam Data Mining. Tangerang: 3M Media Karya, 2020.
D. R. Anamisa dan F. A. Mufarroha, Dasar Pemrograman Web: Teori dan Implementasi (HTML, CSS, Javascript, Bootstrap, CodeIgniter). Malang: Media Nusa Creative, 2020.
Salamun dan Sukri, Buku Ajar Pengembangan Aplikasi Web. Kuningan: Goresan Pena, 2024.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Implementasi K-Means Untuk Pengelompokan Kategori Penjualan Barang Berbasis Web
ARTICLE HISTORY
Issue
Section
Copyright (c) 2025 Shania Risky Agustin, Intan Purnamasari , Betha Nurina Sari

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).