Implementasi K-Means Untuk Pengelompokan Kategori Penjualan Barang Berbasis Web


Authors

  • Shania Risky Agustin Universitas Singaperbangsa Karawang, Karawang, Indonesia
  • Intan Purnamasari Universitas Singaperbangsa Karawang, Karawang, Indonesia
  • Betha Nurina Sari Universitas Singaperbangsa Karawang, Karawang, Indonesia

DOI:

https://doi.org/10.47065/jimat.v5i3.644

Keywords:

Clustering; CodeIgniter; K-Means; Product Grouping; SDLC

Abstract

Harto Joyo Store faces challenges in inventory management due to manual recording processes. The main issue in managing sales data lies in the difficulty of grouping products based on sales patterns to support marketing strategies. This research aims to design and develop a web-based system capable of clustering products using the K-Means Clustering algorithm. The system was developed using the System Development Life Cycle (SDLC) with the Waterfall model, utilizing a dataset of 1,630 sales records from February 2023 to January 2024. The data was processed through the Knowledge Discovery in Databases (KDD) stages, which include Data Selection, Data Preprocessing, Data Transformation, Data Mining, and Knowledge Interpretation/Evaluation. The clustering process resulted in three data groups (Cluster 1 with 9 records, Cluster 2 with 191 records, and Cluster 3 with 28 records), with the number of clusters determined using the Elbow method. Cluster 1 represents best-selling products that require a high stock level, Cluster 2 includes low-demand products with minimal stock needs, and Cluster 3 consists of moderately-selling products that require a balanced inventory level. Evaluation using the Davies-Bouldin Index (DBI) yielded a DBI score of 0.356 for K=3, indicating optimal clustering results as it approaches zero. Initial testing shows that the system accurately classifies products into several sales clusters and can be used as a basis for business decision-making. This research contributes by providing a sales analysis system that can be integrated with the company’s information system. The analysis reveals that low-selling products dominate the data, suggesting that Harto Joyo Store should implement marketing strategies such as discounts or promotions to boost sales.

Downloads

Download data is not yet available.

References

Achray, "Implementasi Algoritma K-Means Untuk Mengelompokkan Data Penjualan Mobil Di PT.Honda Arista Manga Dua," Universitas Satya Negara Indonesia, Jakarta, 2020.

S. Astuti, "Algoritma K-Means Dalam Menentukan Penerima Beasiswa UPZ (Unit Pengumpulan Zakat) Pada Mahasiswa UIN Sumatera Utara Medan," UIN Sumatera Utara, Medan, 2020.

Prasetya, R. Salkiawati, and A. D. Alexander, "Analisis Cluster K-Means Dengan Metode Elbow Untuk Menentukan Pola Penjualan Produk Traffic Room Summarecon Mal Bekasi," Journal of Students Research in Computer Science, vol. 4, no. 1, pp. 105-108, 2023.

F. M. Adiansyah, "Aplikasi Algoritma K-Means Untuk Menentukan Persediaan Barang Berbasis Web Dengan Framework Laravel," Universitas Mercu Buana, Jakarta, 2020.

E. Muningsih, I. Maryani, and V. R. Handayani, "Penerapan metode K-Means dan optimasi jumlah cluster dengan index Davies Bouldin untuk clustering propinsi berdasarkan potensi desa," Jurnal Sains dan Manajemen, vol. 9, no. 1, pp. 96, 2021.

F. Hidayat, Konsep Pengembangan Sistem Informasi Kesehatan. Yogyakarta: Deepublish, 2020.

Y. A. Mustika, A. Manuhutu, N. Ahmad, I. Hasbi, Guntoro, M. A. Manuhutu, M. Ridwan, Hozairi, A. K. Wardhani, S. Alim, I. Romli, Y. Religia, D. T. Ocafian, U. U. Sufandi, dan I. Ernawati, Data Mining dan Aplikasinya. Bandung: Widina Bhakti Persada Bandung, 2021.

E. Bulolo, Data Mining untuk Perguruan Tinggi. Yogyakarta: Deepublish, 2020.

F. Marisa, A. L. Maukaar, dan T. M. Akhriza, Data Mining: Konsep dan Penerapannya. Sleman: Deepublish, 2021.

Rahayu, P. Wibawa, I. G. I. Sudipa, Suryani, A. Surachman, A. Ridwan, I. G. M. Daarmawiguna, M. N. Sutoyo, I. Slamet, S. Harlina, dan I. M. D. Maysanjaya, Data Mining. Jambi: PT Sonpedia Publishing Indonesia, 2024.

W. T. Wu, Y. J. Li, A. Z. Feng, L. Li, T. Huang, A. D. Xu, dan J. Lyu, "Data Mining in Clinical Big Data: The Frequently Used Databases, Steps, and Methodological Models," Military Medical Research, vol. 8, pp. 1–12, 2021.

C. Rianto dan S. Bunyamin, Panduan Pembuatan Aplikasi Clustering Gangguan Jaringan Menggunakan Metode K-Means Clustering. Bandung: Kreatif Industri Nusantara, 2020.

G. D. Nursyafitri, "K-Means Clustering, Salah Satu Contoh Teknik Analisis Data Populer," DQLab, 2022. [Online]. Tersedia: https://dqlab.id/k-means-clustering-salah-satu-contoh-teknik-analisis-data-populer

R. R. Muhima, M. Kurniawan, S. R. Wardhana, A. Yudhana, Sunardi, W. M. Rahmawati, dan G. E. Yuliastuti, Kupas Tuntas Algoritma Clustering: Konsep, Perhitungan Manual, dan Program. Yogyakarta: Penerbit ANDI, 2021.

M. Sholeh dan K. Aeni, "Perbandingan Evaluasi Metode Davies Bouldin, Elbow dan Silhouette pada Model Clustering dengan Menggunakan Algoritma K-Means," STRING (Satuan Tulisan Riset dan Inovasi Teknologi), vol. 8, no. 1, pp. 56–65, 2023.

M. Orisa, "Optimasi Cluster Pada Algoritma K-Means," SENIATI, vol. 6, no. 2, pp. 430–437, 2022.

Y. A. Mustika, A. Manuhutu, N. Ahmad, I. Hasbi, Guntoro, M. A. Manuhutu, M. Ridwan, Hozairi, A. K. Wardhani, S. Alim, I. Romli, Y. Religia, D. T. Ocafian, U. U. Sufandi, dan I. Ernawati, Data Mining dan Aplikasinya. Bandung: Widina Bhakti Persada Bandung, 2021.

N. A. Maori dan E. Evanita, "Metode Elbow dalam Optimasi Jumlah Cluster pada K-Means Clustering," Simetris: Jurnal Teknik Mesin, Elektro dan Ilmu Komputer, vol. 14, no. 2, pp. 277–288, 2023. doi: 10.24176/simet.v14i2.9630.

D. Gustian, S. Fahmi, dan N. D. Arianti, Menggali Emas Terpendam Data Mining. Tangerang: 3M Media Karya, 2020.

D. R. Anamisa dan F. A. Mufarroha, Dasar Pemrograman Web: Teori dan Implementasi (HTML, CSS, Javascript, Bootstrap, CodeIgniter). Malang: Media Nusa Creative, 2020.

Salamun dan Sukri, Buku Ajar Pengembangan Aplikasi Web. Kuningan: Goresan Pena, 2024.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Implementasi K-Means Untuk Pengelompokan Kategori Penjualan Barang Berbasis Web

Dimensions Badge

ARTICLE HISTORY

Published: 2025-07-11

Abstract View: 81 times
PDF Download: 80 times

Issue

Section

Articles