Model Hibrida ARIMA-Neural Network untuk Peramalan Kasus Tuberkulosis


Authors

  • Arriza Agung Setyabudi Universitas Sebelas Maret, Surakarta, Indonesia
  • Etik Zukhronah Universitas Sebelas Maret, Surakarta, Indonesia
  • Isnandar Slamet Universitas Sebelas Maret, Surakarta, Indonesia

DOI:

https://doi.org/10.47065/jimat.v5i3.597

Keywords:

ARIMA; Neural Network; Hybrid Model; Tuberculosis

Abstract

Tuberculosis (TB) remains a significant public health challenge in Surakarta City, necessitating accurate forecasting methods to support effective and planned control strategies. This study aims to evaluate the performance of the Autoregressive Integrated Moving Average-Neural Network (ARIMA-NN) hybrid model in forecasting monthly TB cases in the Surakarta region. The performance of this hybrid model is further compared with the ARIMA model. The research data used consists of monthly TB case data from January 2019 to September 2024 obtained from the Surakarta City Health Department. The data is divided into two sets: training data from January 2019 to December 2023 and testing data from January 2024 to September 2024. The ARIMA(0,1,1) model was identified as the best model for capturing the linear component of the data, yielding a Mean Absolute Percentage Error (MAPE) of 14.52% on the training data and 16.55% on the testing data. The residuals from the ARIMA(0,1,1) model were then further modeled using a Neural Network with 5 hidden neuron architecture, period lookback 6, and a learning rate of 0.1, to capture the remaining non-linear patterns. The developed ARIMA(0,1,1)-NN hybrid model showed better forecasting performance, with a MAPE value of 14.34% on the training data and 14.48% on the testing data. These results indicate that the ARIMA-NN hybrid approach offers the potential for improved accuracy compared to the ARIMA model in the context of TB case forecasting in Surakarta.

Downloads

Download data is not yet available.

References

H. Malcom Frank Palandeng and O. Waworuntu, “Holistic approach on pulmonary tuberculosis: a case study,” J Kedokt Kom Tropik, vol. 11, no. 1, pp. 449–456, 2023.

Y. Zulaikha and R. A. Syakurah, “Manajemen Program Pencegahan dan Pengendalian Tuberculosis Saat Pandemi Covid-19 di Puskesmas Mangunharjo,” Jurnal Bidang Ilmu Kesehatan, vol. 13, no. 2, pp. 130–144, 2023, doi: 10.52643/jbik.v13i2.2236.

S. A. Sinaga, “Implementasi Metode Arima (Autoregressive Moving Average) Untuk Prediksi Penjualan Mobil,” Journal Global Technology Computer, vol. 2, no. 3, pp. 102–109, 2023, doi: 10.47065/jogtc.v2i3.4013.

R. M. Faris, K. Kurniaji, D. Budiman, Y. Yoedani, M. W. Kusuma, and F. Lestari, “Analisis Peramalan Produksi Tanaman Kelapa Sawit Menggunakan Metode Arima pada PTPN Kebun Sukamaju,” Jurnal Bisnis dan Manajemen West Science, vol. 3, no. 03, pp. 275–290, 2024, doi: 10.58812/jbmws.v3i03.1537.

S. M. Saragih and P. Sembiring, “Analisis Perbandingan Metode Arima Dan Double Exponential Smoothing Dari Brown Pada Peramalan Inflasi Di Indonesia,” Journal of Fundamental Mathematics and Applications (JFMA), vol. 5, no. 2, pp. 176–191, 2022, doi: 10.14710/jfma.v5i2.15312.

Listy Oktaviani, Sandy Erlangga, Bintang Aufa Sultan, Agus Perdana Windarto, and Putrama Alkhairi, “Penerapan Metode Jaringan Saraf Tiruan Dalam Memprediksi Produksi Daging Domba Menurut Provinsi,” Journal of Computing and Informatics Research, vol. 3, no. 2, pp. 199–207, 2024, doi: 10.47065/comforch.v3i2.992.

L. Alzubaidi et al., “A survey on deep learning tools dealing with data scarcity: definitions, challenges, solutions, tips, and applications,” J Big Data, vol. 10, no. 1, 2023, doi: 10.1186/s40537-023-00727-2.

C. Vista Magdalena Sihombing, S. Martha, and ainul Miftahul Huda, “Analisis Metode Hybrid Arima-Svr Pada Indeks Harga Saham Gabungan,” Buletin Ilmiah Math. Stat. dan Terapannya (Bimaster), vol. 11, no. 3, pp. 413–422, 2022.

I. K. Hasan and Ismail Djakaria, “Perbandingan Model Hybrid ARIMA-NN dan Hybrid ARIMA-GARCH untuk Peramalan Data Nilai Tukar Petani di Provinsi Gorontalo,” Jurnal Statistika dan Aplikasinya, vol. 5, no. 2, pp. 155–165, 2021, doi: 10.21009/jsa.05204.

E. Lastinawati, A. Mulyana, I. Zahri, and S. Sriati, “Model ARIMA untuk Peramalan Harga Beras di Kabupaten Ogan Komering Ilir Provinsi Sumatera Selatan,” Prosiding Seminar Nasional Lahan Suboptimal, vol. 5, no. 5, pp. 192–200, 2019.

A. A. Abidin, P. F. Buiney, and D. A. Nohe, “Peramalan Data Ekspor Kalimantan Barat Dengan Metode Autoregressive Integrated Moving Average (Arima),” … Nasional Matematika dan …, pp. 96–107, 2022, [Online]. Available: http://jurnal.fmipa.unmul.ac.id/index.php/SNMSA/article/view/900%0Ahttp://jurnal.fmipa.unmul.ac.id/index.php/SNMSA/article/download/900/380

M. A. Firmansyah and C. R. Oktarina, “Kinerja Peramalan Autoregressive Integrated Moving Average dan Seasonal Autoregressive Integrated Moving Average dalam Memprediksi Kejadian Gempa Bumi Sumatra,” vol. 4, no. 1, pp. 1–16, 2025.

N. Kristianti and W. Widiatry, “Penggunaan Algoritma Hebb Dalam Pola Pengenalan Huruf,” Jurnal Teknologi Informasi: Jurnal Keilmuan dan Aplikasi Bidang Teknik Informatika, vol. 18, no. 1, pp. 52–60, 2024, doi: 10.47111/jti.v18i1.12561.

Dwira Azi Pragana, D. W. Manurung, and Agus Perdana Windarto, “Analisa Metode Backpropagation Pada Prediksi Rata-rata Harga Beras Bulanan Di Tingkat Penggilingan Menurut Kualitas,” Journal of Computing and Informatics Research, vol. 2, no. 3, pp. 77–84, 2023, doi: 10.47065/comforch.v2i3.855.

R. A. E. V. Targa Sapanji, S. Lestari, M. Murnawan, and R. Samiharjo, “Prediksi Indeks Bursa Efek Indonesia 2023 Pendekatan ARIMA, Machine Learning dengan R Programming,” Jurnal Manajemen Informatika (JAMIKA), vol. 13, no. 2, pp. 163–177, 2023, doi: 10.34010/jamika.v13i2.10777.

Zulhamidi and R. Hardianto, “PERAMALAN PENJUALAN TEH HIJAU DENGAN METODE ARIMA (STUDI KASUS PADA PT. MK),” Jurnal PASTI, vol. XI, no. 3, pp. 231–244, 2017.

M. F. M. Arsyada and R. Tyasnurita, “Evaluasi Model Jaringan Saraf Tiruan untuk Prediksi Konsentrasi Nitrogen Oksida (NO?),” Jurnal Sistem Informasi, vol. 14, no. 3, pp. 2540–9719, 2025, [Online]. Available: http://sistemasi.ftik.unisi.ac.id

D. Arisandi, S. Salamun, and A. R. Putra, “Prediksi Penerimaan Siswa Baru dengan Metode Single Exponential Smoothing Melalui Metrik Evaluasi MAD, MSE dan MAPE,” Journal of Information System Research (JOSH), vol. 4, no. 4, pp. 1197–1204, 2023, doi: 10.47065/josh.v4i4.3658.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Model Hibrida ARIMA-Neural Network untuk Peramalan Kasus Tuberkulosis

Dimensions Badge

ARTICLE HISTORY

Published: 2025-07-31

Abstract View: 63 times
PDF Download: 39 times

Issue

Section

Articles