Kriptografi Ringan dengan Menggunakan Algoritma di Internet Of Things (IoT)


Authors

  • Rudhi Wahyudi Febrianto Sekolah Tinggi Teknologi Bandung, Bandung, Indonesia
  • Arief Zulianto Universitas Langlangbuana, Indonesia

DOI:

https://doi.org/10.47065/jimat.v4i3.403

Keywords:

Internet of Things; Lightweight Cryptography; Arduino microcontroller; Technology; Data Security

Abstract

Internet of Things (IoT) allows objects to generate data and exchange data. IoT applications using microcontrollers such as Arduino do not yet have features to maintain the security of the data in them. Additionally, Arduino has limited computing capabilities. Therefore, it is necessary to apply cryptography with algorithms that have low computation on the Arduino to maintain data security. Cryptography needs to be applied to IoT applications using microcontrollers to maintain the security of data transaction processes and maintain the authenticity of the origin of data. The application of cryptography on microcontrollers must also be light and able to run on microcontrollers, especially Arduino microcontrollers. On Arduino, computing capabilities are limited but most existing security computing algorithms have high computation. Therefore, the applied cryptographic protocol must have efficient algorithms and low computational capabilities. Our research goal is to understand whether lightweight cryptographic approaches can be used to foster secure IoT by design. As a first step in our research process, we conducted a systematic literature review on lightweight cryptography to gather knowledge about the use of this technology and to document its current level. We found 5 use cases of lightweight cryptography in the literature. We also found several problems in that the algorithm execution time on the Arduino Uno was twice as long as the algorithm execution time on a PC. Changes in the value of the data length and digital signature pair affected the results of verifying the validity of the digital signature. We document and categorize current uses of lightweight cryptography, and provide several recommendations for future work to address the issues mentioned above

Downloads

Download data is not yet available.

References

F. Rozi, H. Amnur, F. Fitriani, and P. Primawati, “Home Security Menggunakan Arduino Berbasis Internet Of Things,” INVOTEK: Jurnal Inovasi Vokasional dan Teknologi, vol. 18, no. 2, pp. 17–24, 2018, doi: 10.24036/invotek.v18i2.287.

S. Bresciani, A. Ferraris, and M. Del Giudice, “The management of organizational ambidexterity through alliances in a new context of analysis: Internet of Things (IoT) smart city projects,” Technol Forecast Soc Change, vol. 136, pp. 331–338, 2018, doi: 10.1016/j.techfore.2017.03.002.

M. U. Ali, S. Hur, and Y. Park, “Wi-Fi-based effortless indoor positioning system using IoT sensors,” Sensors (Switzerland), vol. 19, no. 7, 2019, doi: 10.3390/s19071496.

M. Mohammadi, A. Al-Fuqaha, M. Guizani, and J. S. Oh, “Semisupervised Deep Reinforcement Learning in Support of IoT and Smart City Services,” IEEE Internet Things J, vol. 5, no. 2, pp. 624–635, 2018, doi: 10.1109/JIOT.2017.2712560.

M. S. M. Saleh, A. A. B. Sajak, R. Mohamad, and M. A. M. Zaaba, “IoT Real-Time Soil Monitoring Based on LoRa for Palm Oil Plantation,” J Phys Conf Ser, vol. 1874, no. 1, 2021, doi: 10.1088/1742-6596/1874/1/012047.

V. A. Memos, K. E. Psannis, Y. Ishibashi, B. G. Kim, and B. B. Gupta, “An Efficient Algorithm for Media-based Surveillance System (EAMSuS) in IoT Smart City Framework,” Future Generation Computer Systems, vol. 83, pp. 619–628, 2018, doi: 10.1016/j.future.2017.04.039.

F. Ullah, M. R. Naeem, L. Mostarda, and S. A. Shah, “Clone detection in 5G-enabled social IoT system using graph semantics and deep learning model,” International Journal of Machine Learning and Cybernetics, 2021, doi: 10.1007/s13042-020-01246-9.

B. El Boudani et al., “Implementing deep learning techniques in 5g iot networks for 3d indoor positioning: Delta (deep learning-based co-operative architecture),” Sensors (Switzerland), vol. 20, no. 19, pp. 1–20, 2020, doi: 10.3390/s20195495.

D. K. Sawlani, Keputusan Pembelian Online: Kualitas Website, Keamanan dan Kepercayaan. Surabaya: Scopindo Media Pustaka, 2021.

Fachruddin, Saparudin, E. Rasywir, and Y. Pratama, “Network and layer experiment using convolutional neural network for content based image retrieval work,” Telkomnika (Telecommunication Computing Electronics and Control), vol. 20, no. 1, pp. 118–128, 2022, doi: 10.12928/TELKOMNIKA.v20i1.19759.

X. Li, L. Bing, W. Lam, and B. Shi, “Transformation Networks for Target-Oriented Sentiment Classification,” ArXiv, 2018.

Z. Jianqiang, G. Xiaolin, and Z. Xuejun, “Deep Convolution Neural Networks for Twitter Sentiment Analysis,” IEEE Access, vol. 6, no. c, pp. 23253–23260, 2018, doi: 10.1109/ACCESS.2018.2776930.

H. T. Nguyen and M. Le Nguyen, “Effective Attention Networks for Aspect-level Sentiment Classification,” Proceedings of 2018 10th International Conference on Knowledge and Systems Engineering, KSE 2018, pp. 25–30, 2018, doi: 10.1109/KSE.2018.8573324.

Y. Pratama and E. Rasywir, “Automatic Cost Estimation Analysis on Datawarehouse Project with Modified Analogy Based Method,” in Proceedings of 2018 International Conference on Electrical Engineering and Computer Science, ICECOS 2018, IEEE, 2019, pp. 171–176. doi: 10.1109/ICECOS.2018.8605195.

D. Zaenal Abidin and E. Rasywir, “Penerapan Data Mining Klasifikasi Untuk Memprediksi Potensi Mahasiswa Berprestasi Di Stikom Dinamika Bangsa Jambi Dengan Metode Naive Bayes,” Jurnal Ilmiah Mahasiswa Teknik Informatika, vol. 3, no. 2, 2021.

S. Assegaff, E. Rasywir, and Y. Pratama, “Experimental of vectorizer and classifier for scrapped social media data,” vol. 21, no. 4, pp. 815–824, 2023, doi: 10.12928/TELKOMNIKA.v21i4.24180.

H. Prastiwi, J. Pricilia, and E. Raswir, “Implementasi Data Mining Untuk Menentuksn Persediaan Stok Barang Di Mini Market Menggunakan Metode K-Means Clustering Jurnal Informatika Dan Rekayasa Komputer ( JAKAKOM ),” Jurnal Informatika Dan Rekayasa Komputer (JAKAKOM), vol. 1, no. April, pp. 141–148, 2022.

E. Rasywir, R. Sinaga, and Y. Pratama, “Evaluasi Pembangunan Sistem Pakar Penyakit Tanaman Sawit dengan Metode Deep Neural Network ( DNN ),” vol. 4, pp. 1206–1215, 2020, doi: 10.30865/mib.v4i4.2518.

R. Munir, Kriptografi, Kedua. Bandung: Informatika Bandung, 2019.

R. F. Malik et al., “The Indoor Positioning System Using Fingerprint Method Based Deep Neural Network,” IOP Conf Ser Earth Environ Sci, vol. 248, no. 1, 2019, doi: 10.1088/1755-1315/248/1/012077.

X. Ding and R. Yang, “Vehicle and Parking Space Detection Based on Improved YOLO Network Model,” J Phys Conf Ser, vol. 1325, no. 1, 2019, doi: 10.1088/1742-6596/1325/1/012084.

F. Ubaidillah and I. M. Suartana, “Analisis Peforma Multimedia Streaming Menggunakan Clustering Controller Pada Software Defined Network,” Journal of Informatics and …, vol. 03, pp. 207–215, 2021.

M. Syani, “Implementasi Intrusion Detection System (Ids) Menggunakan Suricata Pada Linux Debian 9 Berbasis Cloud Virtual Private Servers (Vps),” Jurnal Inkofar, vol. 1, no. 1, pp. 13–20, 2020, doi: 10.46846/jurnalinkofar.v1i1.155.

J. Wei, C. H. Chiu, F. Huang, J. Zhang, and C. Cai, “A cost-effective decentralized vehicle remote positioning and tracking system using BeiDou Navigation Satellite System and Mobile Network,” EURASIP J Wirel Commun Netw, vol. 2019, no. 1, pp. 0–8, 2019, doi: 10.1186/s13638-019-1436-y.

S. Subedi and J. Y. Pyun, “A survey of smartphone-based indoor positioning system using RF-based wireless technologies,” Sensors (Switzerland), vol. 20, no. 24, pp. 1–32, 2020, doi: 10.3390/s20247230.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Kriptografi Ringan dengan Menggunakan Algoritma di Internet Of Things (IoT)

Dimensions Badge

ARTICLE HISTORY

Published: 2024-07-31

Abstract View: 328 times
PDF Download: 306 times

Issue

Section

Articles