Analisis Sentimen Pengguna Terhadap Aplikasi Indodana Di Google Play Store Menggunakan Metode Naive Bayes Classifier
DOI:
https://doi.org/10.47065/jimat.v4i3.400Keywords:
Online Loan Application; Sentiment Analysis; Lexicon Labeling; Rating Labeling; Multinomial Naive BayesAbstract
This research aims to evaluate user responses to the Indodana: Paylater & Pinjaman application through sentiment analysis using the naive bayes algorithm. Online lending apps such as Indodana have changed the way individuals access finance by providing a quick and easy process. However, the user's decision to choose a legal app and pay attention to the transparency of fees and loan terms is crucial. With more than ten million downloads and two million reviews, it is important to understand user sentiment so that developers can improve services and maintain public trust. A sentiment analysis method using multinominal naive bayes was used with two labelling approaches inset lexicon and rating. The evaluation was conducted on 500 Indodana: Paylater & Pinjaman reviews, dividing the data into training and testing and using TF-IDF features. The results show that inset lexicon labelling achieved 86% accuracy, whereas rating-based labelling achieved 87% accuracy. These results provide an in-depth view of user responses, aiding in the identification of factors that influence positive or negative perceptions of the app. As such, this research is important for guiding the development of safe, reliable, and compliant online lending applications, as well as for improving overall user satisfaction
Downloads
References
B. Ramdani, A. D. Saputra, M. Rafli, dan A. Zahir, “Analisis Sentimen Terhadap Ulasan Aplikasi Pinjaman Online ( PINJOL ) di Google Play Store Menggunakan Naive Baiyes Classifer,” vol. 1, no. 2, hal. 61–64, 2024.
D. N. Aminah, “Analisis Yuridis Klausula Baku Dalam Perjanjian Pinjaman Online Pada Aplikasi Indodana Prespektif Perlindungan Konsumen,” 2023. [Daring]. Tersedia pada: http://repo.iain-tulungagung.ac.id/5510/5/BAB 2.pdf
N. Herlinawati, Y. Yuliani, S. Faizah, W. Gata, dan S. Samudi, “Analisis Sentimen Zoom Cloud Meetings di Play Store Menggunakan Naïve Bayes dan Support Vector Machine,” CESS (Journal Comput. Eng. Syst. Sci., vol. 5, no. 2, hal. 293–298, 2020, doi: 10.24114/cess.v5i2.18186.
S. N. Salsabila, B. N. Sari, dan R. Mayasari, “Klasifikasi Ulasan Pengguna Aplikasi Discord Menggunakan Metode Information Gain Dan Naïve Bayes Classifier,” INFOTECH J., vol. 9, no. 2, hal. 383–392, 2023, doi: 10.31949/infotech.v9i2.6277.
Rahel Lina Simanjuntak, Theresia Romauli Siagian, Vina Anggriani, dan Arnita Arnita, “Analisis Sentimen Ulasan Pada Aplikasi E-Commerce Shopee Dengan Menggunakan Algoritma Naïve Bayes,” J. Tek. Mesin, Elektro dan Ilmu Komput., vol. 3, no. 3, hal. 23–39, 2023, doi: 10.55606/teknik.v3i3.2411.
M. Tirta Nugraha, N. Nina Sulistiyowati, dan U. Ultach Enri, “Analisis Sentimen Ulasan Aplikasi Satu Sehat Pada Google Play Store Menggunakan Naïve Bayes Classifier,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 5, hal. 3593–3601, 2023, doi: 10.36040/jati.v7i5.7753.
A. I. Tanggraeni dan M. N. N. Sitokdana, “Analisis Sentimen Aplikasi E-Government pada Google Play Menggunakan Algoritma Naïve Bayes,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 9, no. 2, hal. 785–795, 2022, doi: 10.35957/jatisi.v9i2.1835.
R. Maulana, A. Voutama, dan T. Ridwan, “Analisis Sentimen Ulasan Aplikasi MyPertamina pada Google Play Store menggunakan Algoritma NBC,” J. Teknol. Terpadu, vol. 9, no. 1, hal. 42–48, 2023, doi: 10.54914/jtt.v9i1.609.
N. S. Fathullah, Y. A. Sari, dan P. P. Adikara, “Analisis Sentimen Terhadap Rating dan Ulasan Film dengan menggunakan Metode Klasifikasi Naïve Bayes dengan Fitur Lexicon-Based,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 4, no. 2, hal. 590–593, 2020, [Daring]. Tersedia pada: https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/6987
S. Satriajati, S. B. Panuntun, dan S. Pramana, “Implementasi Web Scraping Dalam Pengumpulan Berita Kriminal Pada Masa Pandemi Covid-19,” Semin. Nas. Off. Stat., vol. 2020, no. 1, hal. 300–308, 2021, doi: 10.34123/semnasoffstat.v2020i1.578.
R. S. Putra dan I. D. Ratih, “Klasifikasi Tanggapan Pelaksanaan Program Magang dengan Menggunakan Metode Naive Bayes Classifier,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 1, no. 2, hal. 129–137, 2021, doi: 10.57152/malcom.v1i2.113.
N. Hendrastuty, A. Rahman Isnain, dan A. Yanti Rahmadhani, “Analisis Sentimen Masyarakat Terhadap Program Kartu Prakerja Pada Twitter Dengan Metode Support Vector Machine,” J. Inform. J. Pengemb. IT, vol. 6, no. 3, hal. 150–155, 2021.
F. Fathonah dan A. Herliana, “Penerapan Text Mining Analisis Sentimen Mengenai Vaksin Covid - 19 Menggunakan Metode Naïve Bayes,” J. Sains dan Inform., vol. 7, no. 2, hal. 155–164, 2021, doi: 10.34128/jsi.v7i2.331.
R. Rinandyaswara, Y. A. Sari, dan M. T. Furqon, “Pembentukan Daftar Stopword Menggunakan Term Based Random Sampling Pada Analisis Sentimen Dengan Metode Naïve Bayes (Studi Kasus: Kuliah Daring Di Masa Pandemi),” J. Teknol. Inf. dan Ilmu Komput., vol. 9, no. 4, hal. 717, 2022, doi: 10.25126/jtiik.2022934707.
M. Furqan, S. Sriani, dan S. M. Sari, “Analisis Sentimen Menggunakan K-Nearest Neighbor Terhadap New Normal Masa Covid-19 Di Indonesia,” Techno.Com, vol. 21, no. 1, hal. 51–60, 2022, doi: 10.33633/tc.v21i1.5446.
R. Aryanti, T. Misriati, dan A. Sagiyanto, “Analisis Sentimen Aplikasi Primaku Menggunakan Algoritma Random Forest dan SMOTE untuk Mengatasi Ketidakseimbangan Data,” J. Comput. Syst. Informatics, vol. 5, no. 1, hal. 218–227, 2023, doi: 10.47065/josyc.v5i1.4562.
Muhammad Fernanda Naufal Fathoni, Eva Yulia Puspaningrum, dan Andreas Nugroho Sihananto, “Perbandingan Performa Labeling Lexicon InSet dan VADER pada Analisa Sentimen Rohingya di Aplikasi X dengan SVM,” Modem J. Inform. dan Sains Teknol., vol. 2, no. 3, hal. 62–76, 2024, doi: 10.62951/modem.v2i3.112.
P. R. Alvita Wagiswari D, I. Susilawati, dan A. Witanti, “Analisis Sentimen pada Komentar Aplikasi MyPertamina dengan Metode Multinomial Naive Bayes,” ForAI J. Informatics Artif. Intell. J., vol. 1, no. 1, hal. 10–19, 2023, [Daring]. Tersedia pada: https://jurnal.forai.or.id/index.php/forai/article/view/4
Yuyun, Nurul Hidayah, dan Supriadi Sahibu, “Algoritma Multinomial Naïve Bayes Untuk Klasifikasi Sentimen Pemerintah Terhadap Penanganan Covid-19 Menggunakan Data Twitter,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 4, hal. 820–826, 2021, doi: 10.29207/resti.v5i4.3146.
L. A. Andika, P. A. N. Azizah, dan R. Respatiwulan, “Analisis Sentimen Masyarakat terhadap Hasil Quick Count Pemilihan Presiden Indonesia 2019 pada Media Sosial Twitter Menggunakan Metode Naive Bayes Classifier,” Indones. J. Appl. Stat., vol. 2, no. 1, hal. 34, Jul 2019, doi: 10.13057/ijas.v2i1.29998.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Analisis Sentimen Pengguna Terhadap Aplikasi Indodana Di Google Play Store Menggunakan Metode Naive Bayes Classifier
ARTICLE HISTORY
Issue
Section
Copyright (c) 2024 Rifqi Rizaldi, Riska Aryanti

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).