Pemanfaatan Algoritma K-Means Clustering Pada Sistem Rental Mobil
DOI:
https://doi.org/10.47065/jimat.v5i3.391Keywords:
Data Mining; Clustering; K-Means; Car Rental; RapidminerAbstract
PT. Station Armada Indonesia is one of the companies engaged in the car rental service sector. With the many types of car choices offered, it is not uncommon for many customers to feel confused in choosing what type of car suits their needs. This problem is often experienced by customers who are confused by the many choices of car types available. In this study, the k-means algorithm was used to group cars based on several attributes. The k-means algorithm can be used to group car type data to help provide recommendations for choosing a car type. The purpose of this study is to make it easier for customers to choose the type of car that is most in demand and as material for PT. Station Armada Indonesia to respond better to market changes and achieve better results. Grouping car rental fleets based on rental prices and mileage by utilizing the k-means algorithm can help PT. Station Armada Indonesia group car types. From the grouping results, two cluster groups were obtained with the character of the first cluster being less in demand by customers and the second cluster group being the most in demand by customers. So that the company can easily prepare the type of fleet that is most in demand. In the application of data mining methods using k-means is very helpful and makes it easier for PT. Station Armada Indonesia to develop more effective marketing and offering strategies. By grouping car types with the implementation of k-means can facilitate customer knowledge in choosing car types based on customer needs.
Downloads
References
S. W. Maesaroh, T. M. Diansyah, R. Liza, and Y. F. A. Lubis, “Pemanfaatan Algoritma K-Means Clustering Pada Sistem Rental Mobil,” Bulletin of Computer Science Research, vol. 5, no. 3, pp. 176–181, 2025, doi: 10.47065/bulletincsr.v5i3.494.
M. R. Tetlageni and A. Solichin, “Klasterisasi Penyewaan Kendaraan Menggunakan Metode K-Means Pada PT. Mardika Daya Tribuana,” Bit (Fakultas Teknologi Informasi Universitas Budi Luhur), vol. 20, no. 2, pp. 141–148, 2023, doi: 10.36080/bit.v20i2.2496.
C. Hardjono and S. M. Isa, “Implementation of Data Mining for Churn Prediction in Music Streaming Company Using 2020 Dataset,” Journal on Education, vol. 5, no. 1, pp. 1189–1197, 2022, doi: 10.31004/joe.v5i1.740.
A. R. Savira, “Optimizing Clustering Models Using Principle Component Analysis for Car Customers,” IJCCS (Indonesian Journal of Computing and Cybernetics Systems), vol. 18, no. 2, pp. 1–5, 2024, doi: 10.22146/ijccs.94744.
A. Yudistira and R. Andika, “Pengelompokan Data Nilai Siswa Menggunakan Metode K-Means Clustering,” Journal of Artificial Intelligence and Technology Information, vol. 1, no. 1, pp. 20–28, 2023, doi: 10.58602/jaiti.v1i1.22.
P. Apriyani, A. R. Dikananda, and I. Ali, “Penerapan Algoritma K-Means dalam Klasterisasi Kasus Stunting Balita Desa Tegalwangi,” Hello World Jurnal Ilmu Komputer, vol. 2, no. 1, pp. 20–33, 2023, doi: 10.56211/helloworld.v2i1.230.
S. N. B. Sembiring, H. Winata, and S. Kusnasari, “Pengelompokan Prestasi Siswa Menggunakan Algoritma K-Means,” Jurnal Sistem Informasi Triguna Dharma (JURSI TGD), vol. 1, no. 1, pp. 31–40, 2022, doi: 10.53513/jursi.v1i1.4784.
Z. Sitorus and S. Suhartika, “Penerapan Data Mining Untuk Clustering Penduduk Miskin Di Kota Tanjungbalai Menggunakan Metode Algoritma K-Means,” Journal of Science and Social Research, vol. 7, no. 1, pp. 212–218, 2024, doi: 10.54314/jssr.v7i1.1732.
N. Hendrastuty, “Penerapan Data Mining Menggunakan Algoritma K-Means Clustering Dalam Evaluasi Hasil Pembelajaran Siswa,” Jurnal Ilmiah Informatika dan Ilmu Komputer (JIMA-ILKOM), vol. 3, no. 1, pp. 46–56, 2024, doi: 10.58602/jima-ilkom.v3i1.26.
A. M. Nur, M. Saiful, H. Bahtiar, and M. T. Hidayat, “Penerapan Algoritma K-Means Clustering Dalam Mengelompokkan Smartphone Yang Rekomendasi Berdasarkan Spesifikasi,” Infotek: Jurnal Informatika dan Teknologi, vol. 7, no. 2, pp. 478–488, 2024, doi: 10.29408/jit.v7i2.26283.
A. A. A. Putri and S. A. Rahmah, “Implementasi data mining dengan algoritma k-means clustering untuk analisis bisnis pada perusahaan asuransi,” Djtechno: Jurnal Teknologi Informasi, vol. 5, no. 1, pp. 139–152, 2024, doi: 10.46576/djtechno.v5i1.4537.
D. Marlina and M. Bakri, “Penerapan Data Mining Untuk Memprediksi Transaksi Nasabah Dengan Algoritma C4. 5,” Jurnal Teknologi Dan Sistem Informasi, vol. 2, no. 1, pp. 23–28, 2021, doi: 10.33365/jtsi.v2i1.627.
U. Suriani, “Penerapan Data Mining untuk Memprediksi Tingkat Kelulusan Mahasiswa Menggunakan Algoritma Decision Tree C4. 5,” Journal of Computer and Information Systems Ampera, vol. 4, no. 2, pp. 55–65, 2023, doi: 10.51519/journalcisa.v4i2.393.
F. Alghifari and D. Juardi, “Penerapan Data Mining Pada Penjualan Makanan dan Minuman Menggunakan Metode Algoritma Naïve Bayes: Studi Kasus: Makan Barbeque Sepuasnya,” Jurnal Ilmiah Informatika, vol. 9, no. 02, pp. 75–81, 2021, doi: 10.33884/jif.v9i02.3755.
S. W. Harjono, N. W. Utami, and I. G. A. P. D. Putri, “Klasterisasi tingkat penjualan pada startup Panak. id dengan algoritma K-Means,” Jurnal Ilmiah Teknologi Informasi Asia, vol. 17, no. 1, pp. 55–66, 2023, doi: 10.32815/jitika.v17i1.888.
M. Rosadi, D. A. Nurhasanah, and M. S. Hasibuan, “Clustering Panjang Ruas Jalan di BBPJN Sumut Menggunakan Algoritma K-Means,” Journal of Computer Science and Informatics Engineering, vol. 2, no. 1, pp. 29–38, 2023, doi: 10.55537/cosie.v2i1.567.
Y. Sopyan, A. D. Lesmana, and C. Juliane, “Analisis Algoritma K-Means dan Davies Bouldin Index dalam Mencari Cluster Terbaik Kasus Perceraian di Kabupaten Kuningan,” Build. Informatics, Technol. Sci, vol. 4, no. 3, pp. 1464–1470, 2022, doi: 10.47065/bits.v4i3.2697.
M. Qusyairi, Z. Hidayatullah, and A. Sandi, “Penerapan K-Means Clustering Dalam Pengelompokan Prestasi Siswa Dengan Optimasi Metode Elbow,” Infotek: Jurnal Informatika dan Teknologi, vol. 7, no. 2, pp. 500–510, 2024, doi: 10.29408/jit.v7i2.26375.
M. R. Kusnaidi, T. Gulo, and S. Aripin, “Penerapan Normalisasi Data Dalam Mengelompokkan Data Mahasiswa Dengan Menggunakan Metode K-Means Untuk Menentukan Prioritas Bantuan Uang Kuliah Tunggal,” Journal of Computer System and Informatics (JoSYC), vol. 3, no. 4, pp. 330–338, 2022, doi: 10.47065/josyc.v3i4.2112.
I. W. S. A. Nugraha, “Clustering Pemetaan Tingkat Kemiskinan di Provinsi Jawa Barat Menggunakan Algoritma K-Means,” Jurnal Ilmiah Wahana Pendidikan, vol. 9, no. 2, pp. 234–244, 2023, doi: 10.5281/zenodo.7567622.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Pemanfaatan Algoritma K-Means Clustering Pada Sistem Rental Mobil
ARTICLE HISTORY
Issue
Section
Copyright (c) 2025 Sri Wulandari Maesaroh, T.M Diansyah, Risko Liza, Yessi Fitri Annisa Lubis

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).