Implementasi Metode K-Means Dalam Klasifikasi Desa/Kelurahan Menurut Jenis Industri Kecil Mikro


Authors

  • Muhammad Arifullah STIKOM Tunas Bangsa, Pematangsiantar, Indonesia
  • Jaya Tata Hardinata STIKOM Tunas Bangsa, Pematangsiantar, Indonesia
  • Yuegilion Pranayama Purba STIKOM Tunas Bangsa, Pematangsiantar, Indonesia

DOI:

https://doi.org/10.47065/jimat.v2i1.152

Keywords:

Data Mining; K-Means Algorithm; Grouping; Small and Micro Industries

Abstract

The Ministry of Industry noted that the number of small and medium industries in Indonesia reached 44 million. But unfortunately 99% of all small industries have problems and difficulties in developing their businesses. The problem that is often faced in Indonesia is the limited ability of digital marketing. Unstable production and others. In order to help/support small and micro businesses, a grouping is carried out in the Pematangsiantar sub-district that has small/micro businesses according to the type of business using the K-Means method. The research data used were obtained from BPS and grouped into 2 high and low groups. By implementing the k-means method in the rapidminer application, it is possible to produce a decision tree based on the previous learning data set of small and micro-medium industries using criteria intended to produce relevant and accurate results of small and medium-sized industrial business classification

Downloads

Download data is not yet available.

References

M. R. Ridlo, S. Defiyanti, A. Primajaya, M. Rosyid Ridlo, S. Defiyanti, and A. Primajaya, “Implementasi Algoritme K-Means Untuk Pemetaan Produktivitas Panen Padi Di Kabupaten Karawang,” Citee 2017, pp. 426–433, 2017.

J. T. Informatika-s and F. I. Komputer, “Clusterisasi Data Pasien Menggunakan K-Means Clustering Tri Hertanto,” no. 5.

F. Nurzaman, “Penerapan Algoritma K-Means Dalam Pengelompokan Lokasi Rumah Sakit Provider Pada Asuransi Kesehatan,” pp. 61–67, 2018.

L. Felicia, “Penerapan Metode Clustering Dengan K-Means Untuk Memetakan Potensi Tanaman Padi Di Kota Semarang,” pp. 1–5, 2014.

D. Mining, “Belajar Mudah Algoritma Data Mining Clustering?: k-means,” pp. 2–6.

S. Harlina, “DATA MINING PADA PENENTUAN KELAYAKAN KREDIT MENGGUNAKAN ALGORITMA K-NN BERBASIS FORWARD SELECTION DATA MINING ON CREDIT FEASIBILITY DETERMINATION USING K-NN ALGORITHM BASED ON FORWARD SELECTION,” vol. 11, no. 2, pp. 236–244, 2018.

P. Rapid and M. Studio, “Pengelompokan Data Penjualan Aksesoris Menggunakan Algoritma K-Means,” vol. IV, no. 2, pp. 401–411, 2018.

P. Alkhairi, I. S. Damanik, and A. P. Windarto, “Penerapan Jaringan Saraf Tiruan untuk Mengukur Korelasi Beban Kerja Dosen Terhadap Peningkatan Jumlah Publikasi,” Pros. Semin. Nas. Ris. Inf. Sci., vol. 1, no. September, p. 581, 2019, doi: 10.30645/senaris.v1i0.65.

L. N. Rani, “Klasifikasi Nasabah Menggunakan Algoritma C4.5 Sebagai Dasar Pemberian Kredit,” J. KomTekInfo Fak. Ilmu Komput., vol. 2, no. 2, pp. 33–38, 2015.

T. I. S and F. I. Komputer, “Analisis Data Rawat Inap Rumah Sakit Kota Semarang Untuk Mengetahui Daerah Endemi Penyakit Menggunakan Algoritma K-Means,” 2018.

F. Nasari and C. J. M. Sianturi, “Penerapan Algoritma K-Means Clustering Untuk Pengelompokkan Penyebaran Diare Di Kabupaten Langkat,” CogITo Smart J., vol. 2, no. 2, p. 108, 2018, doi: 10.31154/cogito.v2i2.19.108-119.

R. Rosmini, A. Fadlil, and S. Sunardi, “Implementasi Metode K-Means Dalam Pemetaan Kelompok Mahasiswa Melalui Data Aktivitas Kuliah,” It J. Res. Dev., vol. 3, no. 1, p. 22, 2018, doi: 10.25299/itjrd.2018.vol3(1).1773.

W. A. Triyanto, “ALGORITMA K-MEDOIDS UNTUK PENENTUAN STRATEGI PEMASARAN PRODUK,” J. SIMETRIS, vol. 6, no. 1, pp. 183–188, 2015.

A. ACiputra, D. R. I. M. Setiadi, E. H. Rachmawanto, and A. Susanto, “Klasifikasi Tingkat Kematangan Buah Apel Manalagi Dengan Algoritma Naive Bayes Dan Ekstraksi Fitur Citra Digital,” Simetris J. Tek. Mesin, Elektro dan Ilmu Komput., vol. 9, no. 1, pp. 465–472, 2018, doi: 10.24176/simet.v9i1.2000.

M. H. Rifqo and A. Wijaya, “Implementasi Algoritma Naive Bayes Dalam Penentuan Pemberian Kredit,” Pseudocode, vol. 4, no. 2, pp. 120–128, 2017, doi: 10.33369/pseudocode.4.2.120-128.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Implementasi Metode K-Means Dalam Klasifikasi Desa/Kelurahan Menurut Jenis Industri Kecil Mikro

Dimensions Badge

ARTICLE HISTORY

Published: 2022-01-31

Abstract View: 488 times
PDF Download: 538 times

Issue

Section

Articles