Identifikasi Varietas Kopi Berdasarkan Analisis Warna dan Tekstur Menggunakan Metode Convolutional Neural Network
DOI:
https://doi.org/10.47065/bulletincsr.v5i5.759Keywords:
Coffee; Digital Image; Color Analysis; Texture Analysis; Convolutional Neural NetworkAbstract
Coffee is a plantation commodity with high economic value in Indonesia, with various varieties such as Arabica, Robusta, and Liberica. Differences in coffee varieties can generally be identified through the physical characteristics of the beans, especially color and texture. Based on this, this study aims to develop a digital image-based coffee variety identification system using the Convolutional Neural Network (CNN) method with color and texture analysis as the main features. The research stages include coffee bean image acquisition, pre-processing including color segmentation and image conversion to grayscale, and color and texture feature extraction. This research dataset comes from images of unroasted coffee beans, commonly called green beans, taken using a high-resolution smartphone camera and also using secondary data taken from the Kaggle site. Both types of datasets have the same characteristics and resolution to maintain data consistency. The image dataset is divided into training data and test data, then used to train and test the Convolutional Neural Network (CNN) model. Based on this study, the Convolutional Neural Network (CNN) method can identify coffee varieties based on color and texture analysis. By using 210 training data and 90 test data of coffee bean images, the CNN method can produce an accuracy rate of 94,44%. This research contribution has the potential to be a supporting solution in the process of identifying coffee varieties quickly, accurately, and consistently, so that it can help the coffee industry in the sorting and quality control process.
Downloads
References
S. Widiastutie, A. Pradhanawati, and M. Agung Sardjono, “Diplomasi Kopi Indonesia di Kancah Dunia Chusnu Syarifa Diah Kusuma Universitas Negeri Yogyakarta,” Indones. Perspect., vol. 7, no. 2, pp. 180–204, 2022.
A. M. Mindiroeseno, R. K. Astuti, and P. I. Husada, “HEALTH-RELATED QUALITY OF LIFE ( HRQL ) DARI KANDUNGAN SENYAWA KOPI?: STUDI LITERATURE REVIEW This work is licensed under a Creative Commons Attribution-,” vol. 2, no. 4, pp. 404–411, 2024.
D. Qisthina, Muhammad Fakih Kurniawan, and Tiana Fitrilia, “Deskripsi Atribut Sensori Tiga Jenis Kopi (Arabika, Robusta, dan Liberika) Asal Indonesia dan Hasil Cupping Score,” Karimah Tauhid, vol. 3, no. 8, pp. 9031–9042, 2024, doi: 10.30997/karimahtauhid.v3i8.14611.
P. A. Maharani et al., “IMPLEMENTASI CONVOLUTIONAL NEURAL NETWORK DALAM,” vol. 8, no. 3, pp. 3030–3037, 2024.
R. Zacharie and S. Denny, “Analisis Daya Saing Biji Kopi Indonesia di Pasar Internasional,” J. Inform. Ekon. Bisnis, vol. 6, no. 4, pp. 690–696, 2024, doi: 10.37034/infeb.v6i4.907.
G. A. Pratama, E. Y. Puspaningrum, and H. Maulana, “Convolutional Neural Network Dan Faster Region Convolutional Neural Network Untuk Klasifikasi Kualitas Biji Kopi Arabika,” J. Inform. dan Tek. Elektro Terap., vol. 12, no. 3, pp. 2776–2785, 2024, doi: 10.23960/jitet.v12i3.4887.
M. Murinto, M. Rosyda, and M. Melany, “Klasifikasi Jenis Biji Kopi Menggunkan Convolutional Neural Network dan Transfer Learning pada Model VGG16 dan MobileNetV2,” JRST (Jurnal Ris. Sains dan Teknol., vol. 7, no. 2, p. 183, 2023, doi: 10.30595/jrst.v7i2.16788.
M. T. Hidayat, P. E. P. Utomo, and B. F. Hutabarat, “Implementation of a CNN-trained model for coffee type detection in an Android app with photo input of beans, fruits, and leaves,” Digit. Zo. J. Teknol. Inf. dan Komun., vol. 15, no. 1, pp. 42–52, 2024, doi: 10.31849/digitalzone.v15i1.19563.
U. UNGKAWA and G. AL HAKIM, “Klasifikasi Warna pada Kematangan Buah Kopi Kuning menggunakan Metode CNN Inception V3,” ELKOMIKA J. Tek. Energi Elektr. Tek. Telekomun. Tek. Elektron., vol. 11, no. 3, p. 731, 2023, doi: 10.26760/elkomika.v11i3.731.
K. Azmi and S. Defit, “Implementasi Convolutional Neural Network ( CNN ) Untuk Klasifikasi Batik Tanah Liat Sumatera Barat,” vol. 16, no. 1, pp. 2580–2582, 2023.
A. F. S. F, A. A. Kurniawan, and A. D. Hartanto, “Implementasi Metode CNN dan Deep Learning untuk Menentukan Tingkat Roasting Biji Kopi,” vol. 4, no. 2, pp. 48–54, 2022.
D. Husen, K. Kusrini, and K. Kusnawi, “Deteksi Hama Pada Daun Apel Menggunakan Algoritma Convolutional Neural Network,” J. Media Inform. Budidarma, vol. 6, no. 4, p. 2103, 2022, doi: 10.30865/mib.v6i4.4667.
S. Dewi, F. Ramadhani, and S. Djasmayena, “Klasifikasi Jenis Jerawat Berdasarkan Gambar Menggunakan Algoritma CNN (Convolutional Neural Network)," vol. 3, no. 2, pp. 68–73, 2024.
H. M. Zangana, A. K. Mohammed, and F. M. Mustafa, “Advancements and Applications of Convolutional Neural Networks in Image Analysis: A Comprehensive Review,” vol. 3, no. 1, pp. 16–29, 2024. https://doi.org/10.58602/jics.v3i1.30
D.A. Prastita, A. Setiawan, and I.F. Ashari, “Analisis Perbandingan Metode Convolutional Neural Network (CNN) untuk Deteksi Warna pada Objek,” vol. 5, no. 4, pp. 821–830, 2025.
ChiHsia, C.H., Lee, Y. H., and Lai, C. F., “An Explainable and Lightweight Deep Convolutional Neural Network for Quality Detection of Green Coffee Beans,” vol. 12, no. 12, 2022.
P. Wang, H.Tseng, T.Chen et al., “Deep Convolutional Neural Network for Coffee Bean Inspection,” vol. 33, no. 7, pp. 2299-2310 , 2021, doi: 10.18494/SAM.2021.3277
C. Chan Enriquez, J. Marcelo, D. Rae Verula et al., “Leveraging deep learning for coffee bean grading: A comparative analysis of convolutional neural network models,” vol. 11, no. 1, pp. 1-6, 2024.
B. Jayakumari, A. Mambilamthoda , S. Stephen et al., “Coffee bean graded based on deep net models,” vol. 14, p. 3084-3093, 2024, doi: 10.11591/ijece.v14i3.pp3084-3093
I. Agus, K. Hidjah, and N. Sulistianingsih, “Implementasi Arsitektur Deep Convolutional Neural Network (CNN) dengan Transfer Learning untuk Klasifikasi Penyakit Kulit,” JTIM : Jurnal Teknologi Informasi dan Multimedia, vol. 7, no. 3, pp 461-477., 2025, doi: 10.35746/jtim.v7i3.734.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Identifikasi Varietas Kopi Berdasarkan Analisis Warna dan Tekstur Menggunakan Metode Convolutional Neural Network
ARTICLE HISTORY
How to Cite
Issue
Section
Copyright (c) 2025 Kharisma Utama Putra, Agung Ramadhanu, Syafri Arlis

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).