Analisis Metode Forward Chaining dan Certainty Factor untuk Diagnosa Penyakit pada Ibu Hamil


Authors

  • Nabilla Yasmin Universitas Putra Indonesia YPTK Padang, Padang, Indonesia
  • Yuhandri Yuhandri Universitas Putra Indonesia YPTK Padang, Padang, Indonesia
  • Gunadi Widi Nurcahyo Universitas Putra Indonesia YPTK Padang, Padang, Indonesia

DOI:

https://doi.org/10.47065/bulletincsr.v5i5.756

Keywords:

Expert System; Forward Chaining; Certainty Factor; Disease Diagnosis; Pregnant Women

Abstract

The high number of complications that occur during pregnancy and childbirth has the potential to significantly increase the risk of morbidity and mortality in pregnant women. The Maternal Mortality Rate (MMR) reflects the condition of pregnant, delivering, and postpartum mothers, which remains relatively high and is a major concern in the health sector. Based on this, this study aims to develop and evaluate an Expert System based on the Forward Chaining and Certainty Factor methods to diagnose diseases in pregnant women at an early stage, thereby providing fast and accurate medical decision support and minimizing the risk of complications during pregnancy. The Forward Chaining and Certainty Factor methods were chosen for their ability to handle rule-based inference processes and provide certainty level calculations in the diagnosis results. Forward Chaining is used to find solutions based on the symptoms entered by users, while the Certainty Factor helps assign confidence weights to the generated diagnosis. The dataset in this study consists of 30 data samples with 30 types of symptoms experienced by patients as variables. The results show that the Forward Chaining and Certainty Factor methods are capable of producing disease diagnoses in pregnant women with an accuracy rate of 95%. The contribution of this research is to improve the quality of maternal health services through fast and accurate diagnoses by medical personnel and to assist pregnant women in obtaining an initial diagnosis of common diseases during pregnancy.

Downloads

Download data is not yet available.

References

L. Khusnul Dwihestie, H. Widyaning Pertiwi, and H. Al Hasbi, “GENITRI: JURNAL PENGABDIAN MASYARAKAT BIDANG KESEHATAN Inovasi Pemberdayaan ‘Kader Siaga’ Menuju Kehamilan Sehat Di Desa Kenteng, Nogosari,” vol. 4, no. 1, p. 2025, 2025, [Online]. Available: https://ejournal.pkkb.ac.id/index.php/pkm

S. Agave and M. B. Ulum, “Diagnosa Penyakit Ibu Hamil Menggunakan Metode Forward Chaining Berbasis Website,” vol. 11, no. 1, pp. 1–10, 2023.

A. Pinandito, S. A. Wicaksono, and S. H. Wijoyo, “Implementasi Machine Learning dalam Deteksi Risiko Tinggi Diabetes Melitus pada Kehamilan,” J. Teknol. Inf. dan Ilmu Komput., vol. 10, no. 4, pp. 739–746, 2023, doi: 10.25126/jtiik.20241047005.

E. R. Astuti and J. G. Claudia, “Tinjauan Literatur: Penatalaksanaan Hipertensi Pada Ibu Hamil,” Jambura J. Heal. Sci. Res., vol. 6, no. 2, pp. 186–200, 2024, doi: 10.35971/jjhsr.v6i2.24067.

B. Setiawan and H. Nurcahyanto, “Analisis Peran Stakeholders dalam Implementasi Kebijakan Penanggulangan Angka Kematian Ibu Studi Kasus Kecamatan Pedurungan Kota Semarang,” J. Public Policy Manag. Rev., vol. 9, no. 2, pp. 127–144, 2020, [Online]. Available: https://ejournal3.undip.ac.id/index.php/jppmr/article/view/27351

Julia Fitrianingsih and Ayu Lestari, “Pengaruh Efikasi Diri Terhadap Penurunan Komplikasi Kehamilan Dan Persalinan Di Wilayah Kota Makassar,” J. Rumpun Ilmu Kesehat., vol. 2, no. 2, pp. 75–82, 2022, doi: 10.55606/jrik.v2i2.559.

A. Nurul Fitriyani Az-zahra, A. Suharso, and A. Solehudin, “Sistem Pakar Untuk Mendiagnosis Penyakit Ibu Hamil Menggunakan Metode Forward Chaining Berbasis Website,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 4, pp. 2864–2869, 2024, doi: 10.36040/jati.v7i4.7190.

H. Amnur, I. Rahmayuni, and Y. Aldi, “Perbandingan Metode Certainty Factor Dengan Forward Chaining Pada Sistem Pakar Skrining Kehamilan Resiko Tinggi,” JITSI J. Ilm. Teknol. Sist. Inf., vol. 4, no. 1, pp. 23–27, 2023, doi: 10.62527/jitsi.4.1.108.

M. A. Mokoagow and A. S. Purnomo, “Penerapan Metode Naïve Bayes Pada Sistem Pakar Untuk Mendiagnosis Penyakit Ibu Hamil,” JEKIN - J. Tek. Inform., vol. 4, no. 2, pp. 309–323, 2024, doi: 10.58794/jekin.v4i2.803.

Shipu Debnath, “Integrating Information Technology in Healthcare: Recent Developments, Challenges, and Future Prospects for Urban and Regional Health,” World J. Adv. Res. Rev., vol. 19, no. 1, pp. 455–463, 2023, doi: 10.30574/wjarr.2023.19.1.1335.

M. T. Hafizal et al., “Implementation of expert systems in potassium deficiency in cocoa plants using forward chaining method,” Procedia Comput. Sci., vol. 216, no. 2022, pp. 136–143, 2022, doi: 10.1016/j.procs.2022.12.120.

D. Yuza Mahendra and H. Hermanto, “Sistem Pakar dengan Menggunakan Metode Fordward Chaining dalam Menganalisis Penyakit pada Kucing,” J. Pengemb. Teknol. Inf. dan Komun., vol. 2, no. 1, pp. 17–23, 2024, doi: 10.52060/juptik.v2i1.2196.

H. Hayadi, “Certainty Factor Method Analysis for Identification of Covid-19 Virus Accuracy,” IJIIS Int. J. Informatics Inf. Syst., vol. 6, no. 1, pp. 38–46, 2023, doi: 10.47738/ijiis.v6i1.156.

N. F. Putri, D. Anggraeni, and P. Putri, “Teknik Forward Chaining Dalam Sistem Pakar Mendeteksi Penyakit Gangguan Kesehatan Mental,” Decod. J. Pendidik. Teknol. Inf., vol. 4, no. 2, pp. 700–712, 2024, doi: 10.51454/decode.v4i2.493.

M. A. Nurerwan, I. R. Wulandari, Y. Astuti, and W. Widayani, “Implementasi Metode Forward Chaining dan Certainty Factor Pada Sistem Pakar Diagnosis Penyakit Sinusitis,” Build. Informatics, Technol. Sci., vol. 4, no. 3, pp. 1520–1529, 2022, doi: 10.47065/bits.v4i3.2630.

H. Amnur, I. Rahmayuni, and Y. Aldi, “Perbandingan Metode Certainty Factor Dengan Forward Chaining Pada Sistem Pakar Skrining Kehamilan Resiko Tinggi,” JITSI J. Ilm. Teknol. Sist. Inf., vol. 4, no. 1, pp. 23–27, 2023, doi: 10.30630/jitsi.4.1.108.

M. Febriansyah, I. Nurtanio, and M. Yusuf, “Sistem Pakar Berbasis Pohon Keputusan untuk Diagnosa Awal Penyakit Bergejala Demam,” J. Minfo Polgan, vol. 13, no. 1, pp. 629–636, 2024, doi: 10.33395/jmp.v13i1.13762.

S. Rifky, “Dampak penggunaan artificial intelligence bagi pendidikan Tinggi,” Indones. J. Multidiscip. Soc. Technol., vol. 2, no. 1, pp. 37–42, 2024.

Tripathy, R. K., & Acharya, U. R. (2023). Artificial intelligence-based decision support systems in healthcare: A comprehensive review. Computers in Biology and Medicine, 152, 106391.

S. Pratama and A. A. Muin, “Penerapan metode certainty factor pada diagnosa penyakit pada ayam,” Technol. J. Ilm., vol. 15, no. 4, p. 822, 2024, doi: 10.31602/tji.v15i4.16345.

Abdar, M., Zomorodi-Moghadam, M., Zhou, X., Gururajan, R., Tao, X., & Arandjelovi?, O. (2021). A new machine learning technique for an accurate diagnosis of coronary artery disease. Computer Methods and Programs in Biomedicine, 198, 105352

Irwan, Gustientiedina, A. Hajjah, Y. Desnelita, and W. Susanti, “Software Konsultasi Seleksi Karir Siswa Menggunakan Metode Career Selection Consultation Software of the Students Using,” J. Teknol. Inf. dan Ilmu Komput., vol. 8, no. 1, pp. 27–34, 2021, doi: 10.25126/jtiik.202181093.

U. Salamah and Richi Ramadhan, “Analisis Perbandingan Metode Dempster Shafer Dan Certainty Factor Dalam Mendeteksi Penyakit Anemia,” JSAI (Journal Sci. Appl. Informatics), vol. 6, no. 2, pp. 138–146, 2023, doi: 10.36085/jsai.v6i2.5177.

S. Rapita, G. W. Nurcahyo, Yahundri, R. Kurniawan, P. Yunita, and R. Hidayatullah, “Implementasi Metode Forward Chaining an Certainty Factor Untuk Mengidentifikasi Penyakit Sapi,” J. Inform. Manaj. dan Komputer, vol. 16, no. 01, pp. 1–9, 2024, [Online]. Available: http://ejournal.stmikdumai.ac.id/index.php/path/article/view/700


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Analisis Metode Forward Chaining dan Certainty Factor untuk Diagnosa Penyakit pada Ibu Hamil

Dimensions Badge

ARTICLE HISTORY

Published: 2025-08-29

Abstract View: 59 times
PDF Download: 28 times

How to Cite

Yasmin, N., Yuhandri, Y., & Nurcahyo, G. W. (2025). Analisis Metode Forward Chaining dan Certainty Factor untuk Diagnosa Penyakit pada Ibu Hamil. Bulletin of Computer Science Research, 5(5), 1195-1202. https://doi.org/10.47065/bulletincsr.v5i5.756

Issue

Section

Articles