Implementasi Algoritma Apriori dalam Menemukan Pola Asosiasi pada Data Penjualan Produk Retail


Authors

  • Sufajar Butsianto Universitas Pelita Bangsa, Bekasi, Indonesia
  • Candra Naya Universitas Pelita Bangsa, Bekasi, Indonesia
  • Anggi Muhammad Rifa'i Universitas Pelita Bangsa, Bekasi, Indonesia

DOI:

https://doi.org/10.47065/bulletincsr.v5i5.731

Keywords:

Apriori Algorithm; Association Rule Mining; Confidence; Lift; Bulk Products; Retail Sales Data; Retail Strategy

Abstract

This study aims to implement the Apriori algorithm in finding association patterns in retail product sales data, using the Association Rule Mining approach. Evaluating the ruler or association rules formed based on the support, confidence, and lift parameters, in finding association patterns in retail product sales data with a focus on the relationship between product categories. The data used consists of 500 sales data as sample data and 5,972 transactions as test data. The data mining process was carried out on the main product categories such as Milk, Coffee, Tea, Drinks, Detergent, and Biscuit/Snacks, to find association rules that appear simultaneously with the Bulk Products category in one transaction time. The minimum support parameter was set at 0.02 and the minimum confidence was set at 0.5. By using these parameters, several significant association rules were obtained. One of the strongest rules shows that if products in the Milk, Coffee, Tea, Drinks, Detergent, and Biscuit/Snacks categories are purchased together, then there is a 64.3% probability (confidence) that products in the Bulk Products category are also purchased at the same time. The support value of this rule reached 3.8%, and the lift value was 1.49, indicating a positive association and not a coincidence. Evaluation of the test data showed that this pattern was consistently found across 5,972 transactions, with a repeatability rate of 61.7%. The results of this study demonstrate that the Apriori algorithm is effective in identifying consumer purchasing patterns that can be utilized for product placement strategies, bundling offers, and inventory planning in retail management.

Downloads

Download data is not yet available.

References

Miftahul Arifin, Fauzi Helmi, and D. F. Alamsyah, “Analisis Pola Asosiasi Penjualan Produk Ritel dengan Platform Google Colab,” JUSTIFY?: Jurnal Sistem Informasi Ibrahimy, vol. 3, no. 1, pp. 74–85, Aug. 2024, doi: 10.35316/justify.v3i1.5569.

S. Aulia Miranda, F. Fahrullah, and D. Kurniawan, “Implementasi Association Rule Dalam Menganalisis Data Penjualan Sheshop dengan Menggunakan Algoritma Apriori,” METIK JURNAL, vol. 6, no. 1, pp. 30–36, Jul. 2022, doi: 10.47002/metik.v6i1.342.

T. Hidayat, I. R. Munthe, and A. P. Juledi, “Analisis Data Penjualan Menggunakan Algoritma Apriori pada Analisis Kopi,” INFORMATIKA, vol. 12, no. 3, pp. 443–452, Dec. 2024, doi: 10.36987/informatika.v12i3.6064.

Andi Diah Kuswanto, Achmad Rizqullah Blessar, Abdul Goni, Arya Nibras Nayottama Sidiki, Oke Rizki Abdullah Haryu, and Hafid Anhar Hamiki, “Penerapan Algoritma Apriori Dalam Analisis Keranjang Belanja Retail Di Wilayah Jawa Barat,” Saturnus?: Jurnal Teknologi dan Sistem Informasi, vol. 2, no. 3, pp. 139–150, Jul. 2024, doi: 10.61132/saturnus.v2i3.208.

H. Fathiya Zahra and A. Triayudi, “Implementasi Business Intelligence untuk Memprediksi Penjualan Ritel Pada PT. Chelatama Perkasa Menggunakan Regresi Linear,” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 9, no. 3, pp. 4806–4814, May 2025, doi: 10.36040/jati.v9i3.13427.

I. Shantilawati, S. Zebua, and R. Tarmizi, “Penggunaan Digital Marketing Dalam Meningkatkan Penjualan Bisnis Retail,” JMARI, vol. 5, no. 1, pp. 30–37, Feb. 2024, doi: 10.33050/jmari.v5i1.3130.

Lidiawati and Muhammad Mufti Imam Suyanto, “Analisis Dampak Usaha Ritel Modern Terhadap Riteltradisional,” Jurnal Ekonomi dan Bisnis Indonesia, vol. 5, no. 2, pp. 1–9, Dec. 2020, doi: 10.37673/jebi.v5i02.848.

S. Suradi, H. Hakim, R. N. Tribowo, and N. Mukhlishah, “Analisa Pengaruh Proses Shrinkage (Penyusutan) Pada Produk Teh Pucuk Harum PT. Tirta Fresindo Jaya (Mayora Group),” ILTEK?: Jurnal Teknologi, vol. 20, no. 01, pp. 32–36, May 2025, doi: 10.47398/iltek.v20i01.226.

A. D. Anggono, “Prediksi Shrinkage untuk Menghindari Cacat Produk pada Plastic Injection,” Media Mesin: Majalah Teknik Mesin, vol. 6, no. 2, May 2015, doi: 10.23917/mesin.v6i2.2895.

F. I. Aryanti, T. B. Santoso, Silvia, and M. Khairunnisa, “Penguatan Kemampuan Optimasi Parameter Proses Mesin Injeksi Plastik Otomotif untuk Minimasi Shrinkage,” I-Com: Indonesian Community Journal, vol. 3, no. 4, pp. 2012–2018, Dec. 2023, doi: 10.33379/icom.v3i4.3477.

S. Hasan, A. Aryadi, and A. Suhud, “Analisis Komprehensif Pengaruh Retailing Mix Terhadap Keputusan Pembelian Konsumen: Systematic Review dan Meta-Analisis,” Equilibrium?: Jurnal Ilmiah Ekonomi, Manajemen dan Akuntansi, vol. 13, no. 2, p. 574, Sep. 2024, doi: 10.35906/equili.v13i2.2119.

A. Nur Rahmi and Yosaphat Ananda Mikola, “Implementasi Algoritma Apriori untuk Menentukan Pola Pembelian pada Customer (Studi Kasus?: Toko Bakoel Sembako),” Information System Journal, vol. 4, no. 1, pp. 14–19, May 2021, doi: 10.24076/infosjournal.2021v4i1.561.

M. F. Haryanti et al., “Pengaruh Data Mining, Strategi Perusahaan, Terhadap Laporan Kinerja Perusahaan,” Jurnal Portofolio?: Jurnal Manajemen dan Bisnis, vol. 3, no. 1, pp. 71–90, Jan. 2024, doi: 10.70704/jpjmb.v3i1.285.

A. Wijaya, A. Faqih, D. Solihudin, C. L. Rohmat, and S. Eka Permana, “Penerapan Association Rules Menggunakan Algoritma Apriori Untuk Identifikasi Pola Pembelian,” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 7, no. 6, pp. 3871–3878, Feb. 2024, doi: 10.36040/jati.v7i6.8270.

D. Wulandari, B. Irawan, and A. Bachtiar, “Analisis Algoritma Apriori Untuk Mengidentifikasi Pola Penjualan Di Toko Sembako XYZ,” Jurnal Ilmu Teknik dan Komputer, vol. 8, no. 1, p. 64, Jun. 2024, doi: 10.22441/jitkom.v8i1.009.

Y. Astuti and H. Novitasari, “Algoritma Apriori sebagai Penentu Pola Penjualan Produk Jeans,” Jurnal Ilmiah Edutic?: Pendidikan dan Informatika, vol. 9, no. 1, pp. 20–28, Nov. 2022, doi: 10.21107/edutic.v9i1.7416.

M. G. Saparudin and S. Sholihin, “Penggunaan Data Mining untuk Analisis Pola Pembelian Pelanggan Menggunakan Metode Association Rule Algoritma Apriori (Studi Kasus di Toko Waspada),” Jurnal Teknologi Sistem Informasi dan Aplikasi, vol. 6, no. 1, pp. 27–33, Jan. 2023, doi: 10.32493/jtsi.v6i1.26927.

R. N. Dianti and J. Zeniarja, “Implementasi Algoritma Apriori untuk Analisis Pola Pembelian Konsumen pada Toserba Yusuf Semarang,” JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika), vol. 9, no. 2, pp. 1013–1021, Jun. 2024, doi: 10.29100/jipi.v9i2.5421.

S. D. Rahmawati, A. B. Oktavia, F. S. A. Putri, and D. L. Fithri, “Penerapan Algoritma Apriori Untuk Menemukan Pola Asosiasi Pada Data Penjualan Retail Fashion,” SIMKOM, vol. 10, no. 2, pp. 289–295, Jul. 2025, doi: 10.51717/simkom.v10i2.910.

S. Muharni and S. Andriyanto, “Penentuan Pola Penjualan Menggunakan Algoritma Apriori,” Digital Transformation Technology, vol. 4, no. 1, pp. 60–71, Mar. 2024, doi: 10.47709/digitech.v4i1.3679.

I. Nawangsih and P. Purnamasari, “Analisis Pola Pembelian Produk Kecantikan Menggunakan Algoritma Apriori,” Jurnal Teknologi Informatika dan Komputer, vol. 9, no. 1, pp. 537–546, Mar. 2023, doi: 10.37012/jtik.v9i1.1614.

F. C. Arifiyani and H. Pramaditya, “Peningkatan efektivitas pemasaran pada usaha retail melalui digitalisasi katalog dengan microsite,” Journal of Information System and Application Development, vol. 1, no. 1, pp. 19–28, Mar. 2023, doi: 10.26905/jisad.v1i1.9860.

A. W. Bong and M. Mardiani, “Penerapan Data Analitik untuk Menentukan Pola Asosiasi Penjualan dengan Algoritma Apriori,” MDP Student Conference, vol. 4, no. 1, pp. 31–38, Apr. 2025, doi: 10.35957/mdp-sc.v4i1.10930.

H. Sutrisno and N. A. S. Winarsih, “Klasifikasi Kategori Produk untuk Manajemen Keuangan Remaja menggunakan Algoritma Long Short-Term Memory,” Edumatic: Jurnal Pendidikan Informatika, vol. 8, no. 2, pp. 685–693, Dec. 2024, doi: 10.29408/edumatic.v8i2.27959.

N. A. Hibnastiar, A. F. Setiawan, and E. H. Susanto, “Penerapan Algoritma Apriori dalam Menentukan Rekomendasi Paket Produk,” MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 5, no. 1, pp. 321–331, Jan. 2025, doi: 10.57152/malcom.v5i1.1782.

S. D. Rahmawati, A. B. Oktavia, F. S. A. Putri, and D. L. Fithri, “Penerapan Algoritma Apriori Untuk Menemukan Pola Asosiasi Pada Data Penjualan Retail Fashion,” SIMKOM, vol. 10, no. 2, pp. 289–295, Jul. 2025, doi: 10.51717/simkom.v10i2.910.

A. muliawan Nur, M. Saiful2, H. Bahtiar, and Muhammad Taufik Hidayat, “Penerapan Algoritma K-Means Clustering Dalam Mengelompokkan Smartphone Yang Rekomendasi Berdasarkan Spesifikasi,” Infotek: Jurnal Informatika dan Teknologi, vol. 7, no. 2, pp. 478–488, Jul. 2024, doi: 10.29408/jit.v7i2.26283.

Y. Yunita, M. Fahmi, and S. Salmon, “Penerapan Algoritma K-Means Data Mining Pada Clustering Kelayakan Penerima UKT Dengan Normalisasi Data Model Z-Score,” Building of Informatics, Technology and Science (BITS), vol. 6, no. 3, pp. 1977–1986, Dec. 2024, doi: 10.47065/bits.v6i3.6475.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Implementasi Algoritma Apriori dalam Menemukan Pola Asosiasi pada Data Penjualan Produk Retail

Dimensions Badge

ARTICLE HISTORY

Published: 2025-08-08

Abstract View: 84 times
PDF Download: 53 times

How to Cite

Butsianto, S., Candra Naya, & Anggi Muhammad Rifa’i. (2025). Implementasi Algoritma Apriori dalam Menemukan Pola Asosiasi pada Data Penjualan Produk Retail. Bulletin of Computer Science Research, 5(5), 938-947. https://doi.org/10.47065/bulletincsr.v5i5.731

Issue

Section

Articles