Question Answering System Zakat dengan Metode Long Short-Term Memory (LSTM)


Authors

  • Moch Apip Tanuwijaya Universitas Islam Negeri Sunan Gunung Djati, Bandung, Indonesia
  • Jumadi Universitas Islam Negeri Sunan Gunung Djati, Bandung, Indonesia
  • Eva Nurlatifah Universitas Islam Negeri Sunan Gunung Djati, Bandung, Indonesia

DOI:

https://doi.org/10.47065/bulletincsr.v5i5.728

Keywords:

Question Answering System; LSTM; NLP; Zakat; Telegram Bot API; Islamic Finance Technology; Digital Religious Education

Abstract

Zakat is a fundamental pillar of Islamic finance that serves as a mechanism for wealth redistribution. However, there is currently no Indonesian-language Question Answering System (QAS) capable of automatically and contextually responding to zakat-related queries. This study aims to develop a zakat-focused QAS using a Long Short-Term Memory (LSTM) model integrated into the Telegram platform. The dataset was compiled from the official BAZNAS zakat guidebook and processed through tokenization, padding, and label encoding. The model architecture consists of an embedding layer, two stacked LSTM layers (with return sequences, dropout, and recurrent dropout), followed by two dense layers (200 and 100 units) with additional dropout layers before the softmax output. The model was trained using the Adam optimizer (learning rate 0.003), a batch size of 24, and 100 epochs. Evaluation was conducted using a confusion matrix, resulting in a validation accuracy of 93%, with a precision of 0.94, recall of 0.93, and F1-score of 0.92 (weighted average). The system was deployed via the Telegram Bot API and demonstrated response times under two seconds, with stable performance across hundreds of question labels. This work contributes to the advancement of digital zakat education and presents a scalable solution that can be further extended within the ecosystem of Islamic Finance Technology and Digital Religious Education.

Downloads

Download data is not yet available.

References

N. Latifah, Paujiah, and H. Pronixca, “Analisis Peran Zakat Dalam Pembangunan Ekonomi,” Islamologi: Jurnal Ilmiah Keagamaan, vol. 1, no. 2, pp. 470–480, 2024.

N. Khamimah and Baidhowi, “Optimalisasi Zakat Melalui Baznas Untuk Mendukung Jaminan Sosial Kesehatan Dengan Prinsip Syariah,” Causa: Jurnal Hukum dan Kewarganegaraan, vol. 13, no. 11, pp. 21–30, 2025, doi: 10.6679/tz3k6p18.

Humas BAZNAS RI, “Optimalkan Potensi Zakat, BAZNAS Dorong Pentingnya Dukungan UPZ di Lembaga Pemerintahan - BAZNAS.” Accessed: Jun. 25, 2025. [Online]. Available: https://baznas.go.id/news-show/Optimalkan_Potensi_Zakat,_BAZNAS_Dorong_Pentingnya_Dukungan_UPZ_di_Lembaga_Pemerintahan/2063

OUTLOOK ZAKAT INDONESIA 2024. Pusat Kajian Strategis BAZNAS, 2024. Accessed: Jun. 25, 2025. [Online]. Available: https://www.puskasbaznas.com/publications/books/1857-buku-outlook-zakat-indonesia-2024

R. Kurniawan, T. I. Ramadhan, and R. Hartono, “Implementasi Sistem Question Answering Menggunakan Metode Long Short Term Memory (Lstm) Pada Studi Kasus Bahasa Sunda,” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 8, no. 4, pp. 7570–7578, 2024, doi: 10.36040/jati.v8i4.10237.

A. Setiawan, O. N. Pratiwi, and R. Y. Fa’rifah, “Question Answering System Dalam Bentuk Chatbot Pada Platform Line Untuk Mata Pelajaran Sejarah SMA/MA Dengan Menggunakan Algoritma Levenshtein Distance,” eProceedings of Engineering, vol. 8, no. 5, 2021.

G. F. Avisyah, I. J. Putra, and S. S. Hidayat, “Open Artificial Intelligence Analysis using ChatGPT Integrated with Telegram Bot,” Jurnal ELTIKOM: Jurnal Teknik Elektro, Teknologi Informasi Dan Komputer, vol. 7, no. 1, pp. 60–66, 2023, doi: 10.31961/eltikom.v7i1.724.

A. Marsadualan, H. Harmastuti, and J. Triyono, “Rancang Bangun Aplikasi Tanya Jawab Mengenai Ist Akprind Yogyakarta Berbasis Mobile Menggunakan Algoritma Boyer Moore,” in Seminar Nasional Inovasi Sains Teknologi Informasi Komputer, 2023, pp. 226–238.

R. Arora, P. Singh, H. Goyal, S. Singhal, and S. Vijayvargiya, “Comparative Question Answering System based on Natural Language Processing and Machine Learning,” in Proceedings - International Conference on Artificial Intelligence and Smart Systems, ICAIS 2021, Institute of Electrical and Electronics Engineers Inc., Mar. 2021, pp. 373–378. doi: 10.1109/ICAIS50930.2021.9396015.

P. B. Wintoro, H. Hermawan, M. A. Muda, and Y. Mulyani, “Implementasi Long Short-Term Memory pada Chatbot Informasi Akademik Teknik Informatika Unila,” EXPERT: Jurnal Manajemen Sistem Informasi Dan Teknologi, vol. 12, no. 1, p. 68, 2022, doi: 10.36448/expert.v12i1.2593.

R. Saputra, “Penerapan Merger Retriever pada Question Answering System Hadits,” SATIN–Sains dan Teknologi Informasi, vol. 10, no. 1, pp. 24–35, 2024, doi: 10.33372/stn.v10i1.1117.

S. Rahayu, N. S. Harahap, S. Agustian, and P. Pizaini, “Penerapan Teknologi LangChain pada Question Answering System Fikih Empat Madzhab: Application of Langchain Technology to the Fiqh Question Answering System of Four Madhhab,” MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 4, no. 3, pp. 974–983, 2024, doi: 10.57152/malcom.v4i3.1397.

T. I. Ramadhan, A. Supriatman, and T. R. Kurniawan, “Passage Retrieval untuk Question Answering Bahasa Indonesia Menggunakan BERT dan FAISS,” Jurnal Algoritma, vol. 21, no. 2, pp. 156–163, 2024, doi: 10.33364/algoritma/v.21-2.2100.

J. S. Wibowo, H. Februariyanti, and H. Listiyono, “Model Penjawab Pertanyaan Otomatis Berdasarkan Peringkat Relevansi Kalimat Menggunakan Model BERT,” Kesatria: Jurnal Penerapan Sistem Informasi (Komputer dan Manajemen), vol. 5, no. 3, pp. 1100–1108, 2024, doi: 10.30645/kesatria.v5i3.427.g423.

A. Rosyd, A. I. Purnamasari, and I. Ali, “Penerapan metode long short term memory (LSTM) dalam memprediksi harga saham PT Bank Central Asia,” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 8, no. 1, pp. 501–506, 2024, doi: 10.36040/jati.v8i1.8440.

C. N. Daiman, A. Y. Rahman, and F. Nudiyansyah, “Klasifikasi Teks Berita Breaking News Di Manggarai Menggunakan Long Short Term Memory (LSTM),” Jurnal Mnemonic, vol. 7, no. 2, pp. 170–174, 2024, doi: 10.36040/mnemonic.v7i2.9939.

A. Azrul, A. I. Purnamasari, and I. Ali, “Analisis sentimen pengguna Twitter terhadap perkembangan artificial intelligence dengan penerapan algoritma Long Short-Term Memory (LSTM),” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 8, no. 1, pp. 413–421, 2024, doi: 10.36040/jati.v8i1.8416.

A. Silvanie and R. Subekti, “Aplikasi Chatbot Untuk Faq Akademik Di Ibi-K57 Dengan Lstm Dan Penyematan Kata,” JIKO (Jurnal Informatika dan Komputer), vol. 5, no. 1, pp. 19–27, 2022, doi: 10.33387/jiko.v5i1.3703.

Y. A. Pradana, I. Cholissodin, and D. Kurnianingtyas, “Analisis sentimen pemindahan ibu kota Indonesia pada media sosial Twitter menggunakan metode LSTM dan Word2Vec,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 7, no. 5, pp. 2389–2397, 2023.

P. Choudhary and S. Chauhan, “An intelligent chatbot design and implementation model using long short-term memory with recurrent neural networks and attention mechanism,” Decision Analytics Journal, vol. 9, p. 100359, 2023, doi: 0.1016/j.dajour.2023.100359.

R. Luthfiansyah and B. Wasito, “Penerapan Teknik Deep Learning (Long Short Term Memory) dan Pendekatan Klasik (Regresi Linier) dalam Prediksi Pergerakan Saham BRI,” Jurnal Informatika dan Bisnis, vol. 12, no. 2, pp. 42–54, 2023, doi: 10.46806/jib.v12i2.1059.

Y. Singgalen, “Penerapan Metode CRISP-DM dalam Klasifikasi Data Ulasan Pengunjung Destinasi Danau Toba Menggunakan Algoritma Naïve Bayes Classifier (NBC) dan Decision Tree (DT),” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 7, pp. 1551–1562, Jul. 2023, doi: 10.30865/mib.v7i3.6461.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Question Answering System Zakat dengan Metode Long Short-Term Memory (LSTM)

Dimensions Badge

ARTICLE HISTORY

Published: 2025-08-08

Abstract View: 54 times
PDF Download: 32 times

How to Cite

Tanuwijaya, M. A., Jumadi, & Eva Nurlatifah. (2025). Question Answering System Zakat dengan Metode Long Short-Term Memory (LSTM). Bulletin of Computer Science Research, 5(5), 929-938. https://doi.org/10.47065/bulletincsr.v5i5.728

Issue

Section

Articles