Analisis Sentimen Publik terhadap ‘Save Raja Ampat’ di Media Sosial Menggunakan Model IndoBERT


Authors

  • Dimas Eko Putro Universitas Teknokrat Indonesia, Bandar Lampung, Indonesia
  • Doris Juarsa Universitas Teknokrat Indonesia, Bandar Lampung, Indonesia
  • BP Putra Hermana Universitas Teknokrat Indonesia, Bandar Lampung, Indonesia
  • Bagastian Bagastian Universitas Teknokrat Indonesia, Bandar Lampung, Indonesia
  • Heni Sulistiani Universitas Teknokrat Indonesia, Bandar Lampung, Indonesia

DOI:

https://doi.org/10.47065/bulletincsr.v5i5.621

Keywords:

TikTok; IndoBERT; Save Raja Ampat; Sentiment Analysis; Social Media

Abstract

The "Save Raja Ampat" campaign has emerged as a significant environmental issue that has garnered widespread public attention on social media platforms, particularly TikTok and YouTube. Videos tagged with #SaveRajaAmpat have sparked various public responses, ranging from full support to criticism of natural resource exploitation. This phenomenon highlights the importance of understanding public sentiment as an indicator of the campaign's effectiveness. This study aims to analyze public sentiment toward the campaign using a language modeling approach based on artificial intelligence, namely IndoBERT. The data were obtained from user comments on TikTok videos promoting the “Save Raja Ampat” campaign, totaling 10,000 comments. The analysis process involved several stages, including data preprocessing, sentiment labeling (positive, negative, neutral), and the training and evaluation of the IndoBERT model. Preliminary results indicate that the majority of public sentiment toward the campaign is positive, with the model achieving an accuracy rate of 71% in sentiment classification. This study contributes to understanding public perception of environmental issues and demonstrates the effectiveness of using the IndoBERT model in the context of social media.

Downloads

Download data is not yet available.

References

M. H. , M. R. A. V. S. , A. F. , A. W. , A. & R. F. Arifin, “Analisis Sentimen Masyarakat Terhadap Larangan Pengecer Menjual LPG 3 KG Bersubsidi Menggunakan Algoritma Naïve Bayes.,” vol. 9(4), no. 5778–5780., 2025.

A. Awalina, F. A. Bachtiar, dan F. Utaminingrum, “Perbandingan Pretrained Model Transformer pada Deteksi Ulasan Palsu,” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 9, no. 3, hlm. 597–604, 2022, doi: 10.25126/jtiik.2022935696.

H. Jayadianti, W. Kaswidjanti, A. T. Utomo, S. Saifullah, F. A. Dwiyanto, dan R. Drezewski, “Sentiment analysis of Indonesian reviews using fine-tuning IndoBERT and R-CNN,” ILKOM Jurnal Ilmiah, vol. 14, no. 3, hlm. 348–354, Des 2022, doi: 10.33096/ilkom.v14i3.1505.348-354.

D. Nuryadi dkk., “FINE TUNING INDOBERT UNTUK ANALISIS SENTIMEN PADA ULASAN PENGGUNA APLIKASI TIKET.COM DI GOOGLE PLAY STORE,” 2025.

D. Atmajaya, A. Febrianti, dan H. Darwis, “Metode SVM dan Naive Bayes untuk Analisis Sentimen ChatGPT di Twitter,” The Indonesian Journal of Computer Science, vol. 12, no. 4, hlm. 2173–2181, 2023, doi: 10.33022/ijcs.v12i4.3341.

M. R. Manoppo dkk., “ANALISIS SENTIMEN PUBLIK DI MEDIA SOSIAL TERHADAP KENAIKAN PPN 12% DI INDONESIA MENGGUNAKAN INDOBERT,” Jurnal Kecerdasan Buatan dan Teknologi Informasi, vol. 4, no. 2, hlm. 152–163, Mei 2025, doi: 10.69916/jkbti.v4i2.322.

F. Y. A’la, “Optimasi Klasifikasi Sentimen Ulasan Game Berbahasa Indonesia: IndoBERT dan SMOTE untuk Menangani Ketidakseimbangan Kelas,” Edumatic: Jurnal Pendidikan Informatika, vol. 9, no. 1, hlm. 256–265, Apr 2025, doi: 10.29408/edumatic.v9i1.29666.

D. Sebagai dkk., “PENGGUNAAN MODEL BAHASA INDOBERT PADA METODE RANDOM FOREST UNTUK KLASIFIKASI SENTIMEN DENGAN DATASET TERBATAS TUGAS AKHIR.”

P. L. Parameswari dan Prihandoko, “PENGGUNAAN CONVOLUTIONAL NEURAL NETWORK UNTUK ANALISIS SENTIMEN OPINI LINGKUNGAN HIDUP KOTA DEPOK DI TWITTER,” Jurnal Ilmiah Teknologi dan Rekayasa, vol. 27, no. 1, hlm. 29–42, Apr 2022, doi: 10.35760/tr.2022.v27i1.4671.

R. Kinanda, E. Sudeska, S. Taher, dan A. Alfa, “ANALISIS SENTIMEN MEDIA ONLINE PEMBANGUNAN KABUPATEN INDRAGIRI HILIR: TINJAUAN MEDIA DIGITAL TERHADAP MISI PEMBANGUNAN,” 2024.

B. Liu, “Sentiment Analysis and Opinion Mining,” Morgan & Claypool Publishers, 2012.

M. Gultom, J. Marikros, dan W. Rusli, “SEMINAR NASIONAL CORISINDO Penerapan Vader Sentiment untuk Mendeteksi Sentimen Bahasa Inggris berbasis Website.”

A. E. Putra dan W. Maharani, “Depression Levels Detection Through Twitter Tweets Using RoBERTa Method,” Journal of Information System Research (JOSH), vol. 3, no. 4, hlm. 453–459, 2022, doi: 10.47065/josh.v3i4.1872.

N. Nurwanda, N. Suarna, dan W. Prihartono, “PENERAPAN NLP (NATURAL LANGUAGE PROCESSING) DALAM ANALISIS SENTIMEN PENGGUNA TELEGRAM DI PLAYSTORE,” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 8, no. 2, hlm. 1841–1846, Apr 2024, doi: 10.36040/jati.v8i2.8469.

J. Devlin, M.-W. Chang, K. Lee, K. T. Google, dan A. I. Language, “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding.” [Daring]. Tersedia pada: https://github.com/tensorflow/tensor2tensor

P. Pookduang, R. Klangbunrueang, W. Chansanam, dan T. Lunrasri, “Advancing Sentiment Analysis: Evaluating RoBERTa against Traditional and Deep Learning Models,” Engineering, Technology and Applied Science Research, vol. 15, no. 1, hlm. 20167–20174, 2025, doi: 10.48084/etasr.9703.

A. Farhan dan A. Y. Rahman, “ANALISIS SENTIMEN ULASAN APLIKASI IDENTITAS KEPENDUDUKAN DIGITAL DI GOOGLE PLAY STORE DENGAN BERT,” 2025.

T. D. Purnomo, J. Sutopo, dan A. History, “COMPARISON OF PRE-TRAINED BERT-BASED TRANSFORMER MODELS FOR REGIONAL,” vol. 3, no. 3, hlm. 11–21, 2024.

C. Suhaeni, H. Wijayanto, dan A. Kurnia, “Sentiment Classification on the 2024 Indonesian Presidential Candidate Dataset Using Deep Learning Approaches,” Indonesian Journal of Statistics and Its Applications, vol. 8, no. 2, hlm. 83–94, Des 2024, doi: 10.29244/ijsa.v8i2p83-94.

I. R. Valiant dan E. M. Rosa, “Parenting stress during the Covid-19 pandemic era: A literature review,” Jurnal Kedokteran dan Kesehatan Indonesia, Mei 2022, doi: 10.20885/JKKI.Vol13.Iss1.art12.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Analisis Sentimen Publik terhadap ‘Save Raja Ampat’ di Media Sosial Menggunakan Model IndoBERT

Dimensions Badge

ARTICLE HISTORY

Published: 2025-08-27

Abstract View: 206 times
PDF Download: 149 times

How to Cite

Eko Putro, D., Juarsa, D., Putra Hermana, B., Bagastian, B. ., & Sulistiani, H. (2025). Analisis Sentimen Publik terhadap ‘Save Raja Ampat’ di Media Sosial Menggunakan Model IndoBERT. Bulletin of Computer Science Research, 5(5), 1067-1075. https://doi.org/10.47065/bulletincsr.v5i5.621

Issue

Section

Articles