Prediksi Pola Pergerakan Saham Adro.Jk Melalui Model LSTM Berbasis Data Historis
DOI:
https://doi.org/10.47065/bulletincsr.v5i4.554Keywords:
Stock Price Prediction; Long Short-Term Memory; Yahoo Finance; Time Series; Machine Learning AlgorithmAbstract
The fluctuating nature of stock price movements presents a significant challenge in investment decision-making. To address this issue, a predictive model capable of capturing historical patterns and accurately forecasting stock prices is required. This study aims to develop a stock price prediction model for PT Alamtri Resources Indonesia Tbk (ADRO.JK) using the Long Short-Term Memory (LSTM) algorithm. The dataset comprises daily closing prices from January 1, 2020, to December 30, 2024, obtained from Yahoo Finance. The data was processed in a time series format using a sliding window approach, employing 30 historical data points to predict the next price point. The model was constructed using two LSTM layers, one Dense layer, and techniques such as Dropout and EarlyStopping to prevent overfitting.The training and testing results indicate that the model performs exceptionally well, achieving a Mean Absolute Percentage Error (MAPE) of 0.0341 or 3.41%, corresponding to a prediction accuracy of 96.59%. In a short-term prediction scenario over seven days, the model achieved an accuracy of 99.07% (MAPE = 0.0093), while in a medium-term scenario up to May 19, 2025, it achieved an accuracy of 98.76% (MAPE = 0.0124). The predicted stock price on May 19, 2025, is estimated at IDR 1,913.76. With its high accuracy and low error rate, the LSTM model has proven to be a reliable tool for forecasting stock prices based on historical data.
Downloads
References
Katadata, “Jumlah Investor Pasar Modal Capai 8,3 Juta, Gen Z Gemar Saham Keuangan” katadata.com. Accessed: Nov. 28, 2024. [Online]. Available: https://katadata.co.id/finansial/bursa/625930aa8e76f/jumlah-investor-pasar-modal-capai-8-3-juta-gen-z-gemar-saham-keuangan
G. Bangsawan, “Kebijakan Akselerasi Transformasi Digital di Indonesia: Peluang dan Tantangan untuk Pengembangan Ekonomi Kreatif,” Jurnal Studi Kebijakan Publik, vol. 2, no. 1, pp. 27–40, May 2023, doi: 10.21787/jskp.2.2023.27-40.
A. Nilsen, “Perbandingan Model RNN, Model LSTM, dan Model GRU dalam Memprediksi Harga Saham-Saham LQ45,” Jurnal Statistika dan Aplikasinya, vol. 6, no. 1, 2022.
R. Darmawan, “Mirae Asset Sekuritas Indonesia,” Oct. 2024.
J. Cao, Z. Li, and J. Li, “Financial time series forecasting model based on CEEMDAN and LSTM,” Physica A: Statistical Mechanics and its Applications, vol. 519, pp. 127–139, Apr. 2019, doi: 10.1016/j.physa.2018.11.061.
S. Faisal, U. Indriyani, and T. Rohana, “Implementasi metode double exponential smoothing untuk prediksi saham bank btn (bank tabungan negara),” Jurnal Pendidikan Informatika dan Sains, vol. 12, no. 1, pp. 42–55, Jun. 2023, doi: 10.31571/saintek.v12i1.5337.
I. Himawan, O. Nurdiawan, and G. Dwilestari, “Prediksi Harga Saham Dengan Algoritma Regresi Linier Dengan Rapidminer,” Jurnal Sistem Informasi dan Manajemen, Dec. 2022, [Online]. Available: https://ejournal.stmikgici.ac.id/
F. Akbar Bilawa and H. Hikmayanti, “Prediksi Harga Beras Medium Di Indonesia Dengan Membandingkan Metode Regresi Linear Dan Regresi Polinomial,” Jurnal Riset Sistem Informasi Dan Teknik Informatika (JURASIK), vol. 9, no. 2, pp. 774–787, 2024
Juniardi, Tukino, B. Priyatna, Shofa and, and S. Hilabi, “Klasifikasi Sentimen Analisis Ulasan Aplikasi Alfagift Menggunakan Algoritma Long Short Term Memory,” Jurnal Ilmiah Teknik dan Ilmu Komputer, vol. 4, no. 2, pp. 48–55, May 2025, doi: 10.55123.
Trivusi, “Mengenal Algoritma Long Short Term Memory (LSTM),” trivusi.web.id. Accessed: Jul. 03, 2025. [Online]. Available: https://www.trivusi.web.id/2022/07/algoritma-lstm.html
A. Fauzi, “Forecasting Saham Syariah dengan Menggunakan LSTM,” Al-Masraf Jurnal Lembaga Keuangan dan Perbankan, vol. 4, no. 1, 2020.
L. Wiranda and M. Sadikin, “Penerapan Long Short Term Memory pada Data Time Series untuk Memprediksi Penjualan Produk PT. Metiska Farma,” Janapati, vol. 8, no. 3, 2019.
K. Avicenna, W.?; Endang, W. Pamungkas, “Implementasi Algoritma LSTM untuk Prediksi Harga Saham pada Situs Yahoo Finance dengan Menerapkan Microservice,” Repository Universitas Muhammadiyah Surakarta, 2022.
N. Elfina, S. S. Hilabi, F. Nurapriani, and N. Uktupi, “Implementasi Algoritma K-Nearest Neighbor untuk Prediksi Penjualan Alat Kesehatan pada Media Alkes,” MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 4, no. 2, pp. 695–701, Apr. 2024, doi: 10.57152/malcom.v4i2.1326.
Jonatasv, “Evaluasi Metrik: MSE, RMSE, MAE dan MAPE,” medium.com. Accessed: Jul. 03, 2025. [Online]. Available: https://medium.com/@jonatasv/metrics-evaluation-mse-rmse-mae-and-mape-317cab85a26b
F. P. Carel Anthony, “Sistem Analisis Harga Saham Menggunakan Algoritma Long Short Term Memory (LSTM).,” Media Informatika, vol. 21, no. 3, 2022.
Sabar Sautomo and Hilman Ferdinandus Pardede, “Prediksi Belanja Pemerintah Indonesia Menggunakan Long Short-Term Memory (LSTM),” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 1, pp. 99–106, Feb. 2021, doi: 10.29207/resti.v5i1.2815.
Yashmeet Singh, “3 Metrik Regresi yang Harus Anda Ketahui: MAE, MSE, dan RMSE,” proclusacademy.com. Accessed: Jul. 03, 2025. [Online]. Available: https://proclusacademy.com/blog/explainer/regression-metrics-you-must-know/
Or Jacobi, “Root Mean Square Error (RMSE): The cornerstone for evaluating regression models,” coralogix.com. Accessed: Jul. 03, 2025. [Online]. Available: https://coralogix.com/ai-blog/root-mean-square-error-rmse-the-cornerstone-for-evaluating-regression-models/
G. Tamami and M. Arifin, “Penggunaan LSTM dalam Membangun Prediksi Penjualan untuk Aplikasi Laptop Lens,” Dec. 2021, [Online]. Available: https://www.kaggle.com/datasets/artakusuma/laptope
sugi priharto, “Pengertian dan Contoh MAPE dalam Proses Forecasting Bisnis,” kledo.com. Accessed: Jul. 03, 2025. [Online]. Available: https://kledo.com/blog/pengertian-mape/
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Prediksi Pola Pergerakan Saham Adro.Jk Melalui Model LSTM Berbasis Data Historis
ARTICLE HISTORY
How to Cite
Issue
Section
Copyright (c) 2025 Muhammad Irsyad Iskandar, Tohirin Al Mudzakir, Yana Cahyana, Adi Rizky Pratama

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).