The Certainty Factor Method in An Expert System for Tuberculosis Disease Diagnosis


Authors

  • Dimas Maulana Dwi Kumara Politeknik Negeri Cilacap, Cilacap, Indonesia
  • Linda Perdana Wanti Politeknik Negeri Cilacap, Cilacap, Indonesia
  • Riyadi Purwanto Politeknik Negeri Cilacap, Cilacap, Indonesia

DOI:

https://doi.org/10.47065/bulletincsr.v5i4.549

Keywords:

Tubercolosis; Expert System; Certainty Factor; Disease; Diagnosis

Abstract

Tuberculosis is an infection caused by acid-fast bacilli (AFB) and is an infectious disease that can attack anyone through the air. This disease is hazardous and chronic, with a high prevalence among individuals aged 15-35 years. The diagnosis of tuberculosis traditionally takes a long time because it involves an interview process by medical experts and testing sputum samples in the laboratory to determine whether the patient is positive or negative for this disease. This process is not only time-consuming but also requires significant resources. To overcome this problem and speed up the diagnosis process, a technology-based approach is needed, namely the Expert System with the certainty factor method. This method can handle uncertainty in medical diagnosis by providing a certainty value for each observed symptom. This article discusses in depth the application of the certainty factor method in an expert system to diagnose Tuberculosis. By using this method, the system can provide faster and more accurate diagnosis results in diagnosing tuberculosis with a confidence level of 94.6% and reduce the workload of medical personnel. The application of the certainty factor method allows the integration of various symptoms and relevant medical data to produce more precise and reliable diagnostic conclusions.

Downloads

Download data is not yet available.

References

L. Kaewwilai et al., “Development and evaluation of an artificial intelligence (AI) -assisted chest x-ray diagnostic system for detecting, diagnosing, and monitoring tuberculosis,” Glob. Transitions, vol. 7, pp. 87–93, 2025, doi: 10.1016/j.glt.2025.02.005.

N. D. Wirasbawa, C. T. Prasetya Widjaja, C. I. Wenji, and S. Hansun, “Expert API for Early Detection of TB Disease with Forward Chaining and Certainty Factor Algorithms,” Inform., vol. 46, no. 6, pp. 117–124, 2022, doi: 10.31449/inf.v46i6.3947.

H. Kumar, F. Teena, A. Bai, L. Kumar, and S. Gallego, “Bridging gaps in tuberculosis control: addressing cross-border challenges between India and Pakistan,” J. Clin. Tuberc. Other Mycobact. Dis., vol. 39, no. April, p. 100526, 2025, doi: 10.1016/j.jctube.2025.100526.

A. Zheng et al., “Changes in incarceration and tuberculosis notifications from prisons during the COVID-19 pandemic in Europe and the Americas: a time-series analysis of national surveillance data,” Lancet Public Heal., vol. 10, no. 4, pp. e285–e294, 2025, doi: 10.1016/S2468-2667(24)00325-6.

O. Alhabashneh, “Fuzzy-based adaptive framework for module advising expert system,” Ann. Emerg. Technol. Comput., vol. 5, no. 1, pp. 13–27, 2021, doi: 10.33166/AETiC.2021.01.002.

L. P. Wanti, O. Somantri, N. W. A. Prasetya, and L. Puspitasari, “Fuzzy expert system design for detecting stunting,” Indones. J. Electr. Eng. Comput. Sci., vol. 34, no. 1, pp. 556–564, 2024, doi: 10.11591/ijeecs.v34.i1.pp556-564.

D. Krisbiantoro, L. P. Wanti, and N. W. A. Prasetya, “Combination certainty factor method and fuzzy expert system module to determine the dose of leukemia drugs,” Indones. J. Electr. Eng. Comput. Sci., vol. 35, no. 3, pp. 1915–1923, 2024, doi: 10.11591/ijeecs.v35.i3.pp1915-1923.

L. Wanti, N. Prasetya, L. Sari, and L. Puspitasari, “Optimization of Certainty Factor Method to Detect Preeclampsia in Women Pregnant,” in Icast 2021, 2023, pp. 147–155. doi: 10.5220/0010941400003260.

I. Jakson Malo, C. Dai Payon Binti Gabriel, and T. Kurra, “Penerapan Metode Certainty Factor Untuk Mendiagnosa Penyakit Tbc Pada Puskesmas Billa Cenge,” J. Sains dan Sist. Teknol. Inf., vol. 5, no. 2, pp. 191–196, 2023, doi: 10.59811/sandi.v5i2.71.

A. A. Prameswaty and W. S. J. Swari, Made Hanindia Prami; Saputra, “Perancangan Sistem Pakar Diagnosis Penyakit TBC Paru dengan Metode Certainty factor dan Dempster Shafer,” vol. 8, no. 5, pp. 8658–8663, 2024.

D. Santra, S. K. Basu, J. K. Mandal, and S. Goswami, “Rough set based lattice structure for knowledge representation in medical expert systems: Low back pain management case study,” Expert Syst. Appl., vol. 145, p. 113084, 2020, doi: 10.1016/j.eswa.2019.113084.

I. W. Sutoyo, A. P. Widodo, and A. F. Rochim, “Decision support system for handling intervention on toddlers stunting cases in Indonesia using the certainty factor method,” J. Phys. Conf. Ser., vol. 1943, no. 1, 2021, doi: 10.1088/1742-6596/1943/1/012110.

B. A. M. Al-Rami Al-Ghamdi, “Analyzing the impact of data visualization applications for diagnosing the health conditions through hesitant fuzzy-based hybrid medical expert system,” Ain Shams Eng. J., no. February, p. 102705, 2024, doi: 10.1016/j.asej.2024.102705.

R. Subha and J. Zhang, “An optimal construction of smart aged homes based on SDLC using smart sensors and agent networks,” Int. J. Intell. Networks, vol. 3, no. September, pp. 138–142, 2022, doi: 10.1016/j.ijin.2022.09.003.

M. Ngongo and Y. Rada, “Sistem Pakar Untuk Mendiagnosa Penyakit Malaria Berbasis Website Menggunakan Metode Forward Chaining,” E-Link J. Tek. Elektro dan Inform., vol. 18, no. 2, p. 37, 2023, doi: 10.30587/e-link.v18i2.5996.

N. W. A. Prasetya, L. P. Wanti, L. Sari, and L. Puspitasari, “Sistem Pakar Deteksi Dini Penyakit Preeklamsia pada Ibu Hamil Menggunakan Metode Certainty Factor,” Infotekmesin, vol. 13, no. 1, pp. 168–177, 2022, doi: 10.35970/infotekmesin.v13i1.1050.

I. Bahroni, L. P. Wanti, N. W. Rahadi, A. A. Hartono, and R. Purwanto, “Implementation of Forward Chaining for Diagnosis of Dengue Hemorrhagic Fever,” J. Innov. Inf. Technol. Appl., vol. 4, no. 1, pp. 32–42, 2022, doi: 10.35970/jinita.v4i1.1204.

O. O. Olusanya, R. G. Jimoh, S. Misra, and J. B. Awotunde, “A neuro-fuzzy security risk assessment system for software development life cycle,” Heliyon, vol. 10, no. 13, p. e33495, 2024, doi: 10.1016/j.heliyon.2024.e33495.

S. Padmanabhan Poti and C. J. Stanton, “Enabling affordances for AI Governance,” J. Responsible Technol., vol. 18, no. May, p. 100086, 2024, doi: 10.1016/j.jrt.2024.100086.

J. Yuan, S. Zhang, S. Wang, F. Wang, and L. Zhao, “Process abnormity identification by fuzzy logic rules and expert estimated thresholds derived certainty factor,” Chemom. Intell. Lab. Syst., vol. 209, no. August 2020, p. 104232, 2021, doi: 10.1016/j.chemolab.2020.104232.

P. F. Orun, Y. A. Pranoto, and A. Faisol, “Penerapan Metode Forward Chaining Dan Certainty Factor Pada Sistem Pakar Untuk Diagnosis Penyakit Malaria Di Kabupaten Mimika Berbasis Web,” JATI (Jurnal Mhs. Tek. Inform., vol. 6, no. 1, pp. 325–335, 2022, doi: 10.36040/jati.v6i1.4618.

Z. Li, “Research on the action mechanism of certainty and uncertainty of experience in the consumption context,” Heliyon, vol. 10, no. 11, p. e31700, 2024, doi: 10.1016/j.heliyon.2024.e31700.

C. Jiang, W. Fan, N. Yu, and E. Liu, “Spatial modeling of gully head erosion on the Loess Plateau using a certainty factor and random forest model,” Sci. Total Environ., vol. 783, p. 147040, 2021, doi: 10.1016/j.scitotenv.2021.147040.

D. D. S. Fatimah, Y. Septiana, and G. Ramadhan, “Rancang Bangun Aplikasi Sistem Pakar Diagnosa Penyakit Stunting Berbasis Web Menggunakan Metode Certainty Factor,” J. Algoritm., vol. 19, no. 2, pp. 547–557, 2022, doi: 10.33364/algoritma/v.19-2.1144.

S. Wang, J. Ren, and R. Bai, “A semi-supervised adaptive discriminative discretization method improving discrimination power of regularized naive Bayes,” Expert Syst. Appl., vol. 225, no. November 2022, p. 120094, 2023, doi: 10.1016/j.eswa.2023.120094.

L. P. Wanti and Lina Puspitasari, “Optimization of the Fuzzy Logic Method for Autism Spectrum Disorder Diagnosis,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 6, no. 1, pp. 16–24, 2022, doi: 10.29207/resti.v6i1.3599.

F. Nugroho and A. U. Bani, “Penerapan Metode Dempster Shafer Pada Sistem Pakar Diagnosa Penyakit Usus Halus,” J. Media Inform. Budidarma, vol. 6, no. 1, p. 243, 2022, doi: 10.30865/mib.v6i1.3468.

L. P. Wanti, N. W. A. Prasetya, I. Awaludin, M. B. A. Saputra, S. N. Furi, and D. M. D. Kumara, “Application of data mining for diagnosis of ENT diseases using the Naïve Bayes method with genetic algorithm feature selection,” Indones. J. Electr. Eng. Comput. Sci., vol. 37, no. 1, pp. 398–405, 2025, doi: 10.11591/ijeecs.v37.i1.pp398-405.

A. Heiß, D. S. Paraforos, G. M. Sharipov, and H. W. Griepentrog, “Modeling and simulation of a multi-parametric fuzzy expert system for variable rate nitrogen application,” Comput. Electron. Agric., vol. 182, no. February, 2021, doi: 10.1016/j.compag.2021.106008.

F. Otieno, S. R. N. V. Nalakurthi, M. Raji, A. Tiwari, I. Anton, and S. Gharbia, “Farmer’s attitudes towards GHG emissions and adoption to low-cost sensor-driven smart farming for mitigation: The case of Ireland tillage and horticultural farmers,” Smart Agric. Technol., vol. 9, no. October, 2024, doi: 10.1016/j.atech.2024.100622.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel The Certainty Factor Method in An Expert System for Tuberculosis Disease Diagnosis

Dimensions Badge

ARTICLE HISTORY

Published: 2025-06-30

Abstract View: 46 times
PDF Download: 32 times

How to Cite

Kumara, D. M. D., Linda Perdana Wanti, & Purwanto, R. (2025). The Certainty Factor Method in An Expert System for Tuberculosis Disease Diagnosis. Bulletin of Computer Science Research, 5(4), 806-812. https://doi.org/10.47065/bulletincsr.v5i4.549

Issue

Section

Articles

Most read articles by the same author(s)