Penerapan Algoritma Naive Bayes Untuk Sistem Klasifikasi Status Gizi Bayi Balita
DOI:
https://doi.org/10.47065/bulletincsr.v5i5.508Keywords:
Nutritional Status; Infants and Toddlers; Naïve Bayes Algorithm; Data Classification; Nutrition Information SystemAbstract
Infants and toddlers are in a critical period of rapid growth and development, often referred to as the "golden age." During this stage, regular nutritional assessments are essential to monitor health status and detect potential nutritional problems early. This study aims to classify the nutritional status of infants and toddlers using the Naïve Bayes algorithm, a probabilistic classification method based on Bayes' theorem with a strong assumption of attribute independence. The main attributes used in the classification system include age, weight, and height. The dataset consists of 700 records of infants and toddlers collected from previous observations. The results show that the Naïve Bayes algorithm can be effectively implemented for nutritional status classification, achieving a system accuracy of 88.14%. This indicates that the method performs well and has the potential to be utilized in decision support systems for child health monitoring.
Downloads
References
J. Jurnal and A. Bhakti, “DINI SEBAGAI UPAYA DETEKSI DINI TUMBUH KEMBANG ANAK DI PAUD / TK ABA BLIGO KECAMATAN BUARAN KABUPATEN PEKALONGAN Anak usia dini adalah anak yang berusia antara 3-6 tahun . Sedangkan hakikat anak usia dini adalah sebagai individu yang unik dimana ia memili,” vol. 2, no. 1, pp. 1–10, 2021.
Y. P. 2020 Enny Fitriahadi, “Faktor Yang Mempengaruhi Perkembangan Anak Usia 3-6 Tahun Di Posyandu Wilayah Kerja Puskesmas Tinggede, Kecamatan Marawola Kabupaten Sigi Sulawesi Tengah Indonesia,” vol. 13, no. October 2019, pp. 61–67, 2020.
A. Mawarni, F. Agushybana, C. T. Purnami, S. Winarni, and D. Zein, “Assistance in Assessing the Quality of Toddler Nutrition Status Data at Posyandu in Padangsari Banyumanik Health Center Working Area Semarang,” JPHCS (Journal Public Heal. Community Serv., vol. 2, no. 1, pp. 0–6, 2023.
L. Nurcholifah and D. Hartanti, “Klasifikasi Penentuan Gizi Balita dengan Algoritma K-Nearest Neighbor ( Studi Kasus?: Puskesmas Bringin ) Classification of Toddler Nutrition Determination using the K- Nearest Neighbor Algorithm ( Case Study?: Bringin Community Health Center ),” vol. 14, no. 105, pp. 296–307, 2025.
E. N. Candra, I. Cholissodin, and R. C. Wihandika, “Klasifikasi Status Gizi Balita Menggunakan Metode Optimasi Random Forest Dengan Algoritme Genetika (Studi Kasus: Puskesmas Cakru),” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 6, no. 5, pp. 2188–2197, 2022, [Online]. Available: http://j-ptiik.ub.ac.id
A. Arif and D. Gusmaliza, “Sistem Cerdas Deteksi Status Gizi Anak melalui Eksplorasi Algoritma C.45 dan Forward Feature Selection,” Edumatic J. Pendidik. Inform., vol. 8, no. 2, pp. 774–753, 2024, doi: 10.29408/edumatic.v8i2.28014.
Rizdania et al., “Penerapan algoritma naïve bayes pada klasifikasi penerimaan PMT balita di posyandu desa krengih,” Perwira J. Sci. Eng., vol. 5, no. 1, pp. 155–160, 2025, doi: 10.54199/pjse.v5i1.411.
R. Wati and I. Istianah, “Risk Factors Associated with Nutritional Status of Toddlers,” J. Ilm. Kesehat., vol. 5, no. 2, pp. 396–404, 2023, doi: 10.36590/jika.v5i2.395.
A. D. Putri, F. Sholekhah, E. Dadynata, L. Efrizoni, R. Rahmaddeni, and N. Sapina, “Penerapan Algoritma Decesion Tree C4.5 untuk Memprediksi Tingkat Kelangsungan Hidup Pasien Kanker Tiroid,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 4, no. 4, pp. 1485–1495, 2024, doi: 10.57152/malcom.v4i4.1532.
R. Azhari Subhan, Asriyanik, and F. Frazna Az Zahra, “Klasifikasi Status Gizi Balita Berdasarkan Tinggi Badan Dan Berat Badan Menggunakan Metode Naïve Bayes Di Puskesmas Limusnunggal,” Synerg. J. Ilm. Multidisiplin, vol. 1, no. 4, pp. 217–223, 2024, [Online]. Available: https://e-journal.naureendigition.com/index.php/sjim
M. Aline Wijaya and Frisca Frisca, “Pengetahuan Gizi Ibu dan Status Gizi Balita di Posyandu Tanjung Jaya,” J. Ilm. Kedokt. dan Kesehat., vol. 4, no. 3, pp. 175–182, 2025, doi: 10.55606/klinik.v4i3.4505.
R. Sri Haryanti, W. Wijayanti, and S. Syarifah, “Analisis Pengetahuan Ibu Tentang Status Gizi dengan Kepatuhan Pemantauan Pertumbuhan Balita,” Profesi (Profesional Islam. Media Publ. Penelit., vol. 21, no. 1, pp. 68–74, 2023, doi: 10.26576/profesi.v21i1.223.
P. Handayani and A. Charis Fauzan, “KLIK: Kajian Ilmiah Informatika dan Komputer Machine Learning Klasifikasi Status Gizi Balita Menggunakan Algoritma Random Forest,” Media Online), vol. 4, no. 6, pp. 3064–3072, 2024, doi: 10.30865/klik.v4i6.1909.
R. Ardhi Harlanto, D. Iskandar, and C. Ajika Pamungkas, “Pemantauan Kesehatan Berbasis Kecerdasan Buatan Untuk Perekaman Dan Analisis Histori Kesehatan,” JATI (Jurnal Mhs. Tek. Inform., vol. 9, no. 4, pp. 7252–7257, 2025, doi: 10.36040/jati.v9i4.14414.
R. Alfarezy, E. Ermatita, and R. M. B. Wadu, “Implementasi Algoritma Naïve Bayes Untuk Analisis Klasifikasi Survei Kesehatan Mental (Studi Kasus: Open Sourcing Mental Illness),” Inform. J. Ilmu Komput., vol. 19, no. 1, pp. 1–10, 2023, doi: 10.52958/iftk.v19i1.4696.
D. A. Maulana, “Faktor Yang Memperngaruhi Anatar Muka Pengguna Pada Aplikasi Branly Berbasis Mobile,” TECHSI - J. Tek. Inform., vol. 15, no. 2, pp. 15–27, 2024, doi: 10.29103/techsi.v15i2.19420.
M. Ian Firdaus and A. Pramono, “Evaluasi Dan Pengembangan Desain Antarmuka Aplikasi Catatmak Pencatatan Keuangan Pribadi Menggunakan Metode User Centered Design,” JATI (Jurnal Mhs. Tek. Inform., vol. 9, no. 2, pp. 2173–2180, 2025, doi: 10.36040/jati.v9i2.12935.
S. K. P. Loka and A. Marsal, “Perbandingan Algoritma K-Nearest Neighbor dan Naïve Bayes Classifier untuk Klasifikasi Status Gizi Pada Balita,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 3, no. 1, pp. 8–14, 2023, doi: 10.57152/malcom.v3i1.474.
S. Taufiq, “Klasifikasi Status Gizi Menggunakan Algoritma Naive Bayes berdasarkan Pengukuran Antropometri,” J. Ilmu Pengetah. dan Teknol., vol. 9, no. 1, pp. 1–5, 2025, doi: 10.31543/jii.v9i1.379.
L. A. Budiman et al., “Analisis Status Gizi Menggunakan Pengukuran Indeks Massa Tubuh dan Beban Kerja dengan Metode 10 Denyut pada Tenaga Kesehatan,” Nutr. Nutr. Res. Dev. J., vol. 1, no. 1, pp. 6–15, 2021, doi: 10.15294/nutrizione.v1i1.48359.
Permenkes, “Peraturan Permenkes 2 Tahun 2020,” 2020.
P. B. N. Setio, D. R. S. Saputro, and Bowo Winarno, “Klasifikasi Dengan Pohon Keputusan Berbasis Algoritme C4.5,” Prism. Pros. Semin. Nas. Mat., vol. 3, pp. 64–71, 2020.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Penerapan Algoritma Naive Bayes Untuk Sistem Klasifikasi Status Gizi Bayi Balita
ARTICLE HISTORY
How to Cite
Issue
Section
Copyright (c) 2025 Mohamad Ilyas Abas, Rizal Lamusu, Widya Eka Pranata, Syahrial Syahrial, Irawan Ibrahim, Wahyudin Hasyim, Verliana Kiayi

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).