Optimasi Algoritma Nai?ve Bayes Untuk Klasifikasi Buah Apel Berdasarkan Fitur Warna RGB
DOI:
https://doi.org/10.47065/bulletincsr.v3i3.251Keywords:
Apples; Classification; Naïve Bayes; RGB; Extraction FeatureAbstract
Apples are one type of fruit that is increasingly popular in Indonesia. This fruit is not only popular because it tastes good, but is also rich in nutrients and fiber which are beneficial for the health of the body. Along with the development of the agricultural industry in Indonesia, domestic apple production is also increasing. This study aims to classify types of apples based on RGB color using research methods that include apple image data collection, RGB feature extraction, data division with k-fold cross validation, classification model with Naive Bayes. This method utilizes color features taken from apple images as input to determine the appropriate class or type of apple. The test results show that the accuracy for the sweet level has a value of 100%, for the medium level it has a value of 86.66% and for sour it has a value of 80%. The average accuracy of the Naïve Bayes method is 88.88%. Classification results using the Naïve Bayes algorithm.
Downloads
References
A. Oikonomidis, C. Catal, and A. Kassahun, “Deep learning for crop yield prediction: a systematic literature review,” New Zeal. J. Crop Hortic. Sci., pp. 1–26, 2022.
V.Y.P. Ardhana, J. Saputra, and M. Afriansyah, "Klasifikasi Jenis Mangga Berdasarkan Tekstur Tulang Daun Menggunakan Metode Learning Vector Quantization (LVQ)," Journal of Computer System and Informatics (JoSYC), vol. 4, no. 1, pp. 220-228, 2022.
M. Rifai et al., "Dynamic time distribution system monitoring on traffic light using image processing and convolutional neural network method," IOP Conf. Series: Mater. Sci. Eng., vol. 1175, no. 1, p. 012005, Aug. 2021.
Y. Xu, Y. Zhou, P. Sekula, and L. Ding, “Machine learning in construction: From shallow to deep learning,” Dev. Built Environ., vol. 6, p. 100045, 2021.
Tommy Wijaya Sagala, Eliyah Acantha Manapa, Valian Yoga Pudya Ardhana, Godfried, "Perbandingan Implementasi Manajemen Pengetahuan pada," JTIM : Jurnal Teknologi Informasi dan Multimedia, vol. 1, no. 4, pp. 327-335 , 2020.
Nurul Salsabila Syam, et al, “Model Support Vector Machine untuk Prediksi pada Penggunaan Energi Listrik di Rumah Hemat Energi”, JI, vol. 1, no. 2, pp. 56-59, Sep. 2022.
M. Bibi etal., “Class association and attribute relevancy based imputation algorithm to reduce twitter data for optimal sentiment analysis,” IEEE Access, vol. 7, pp. 136535–136544, 2019
Valian Yoga Pudya Ardhana, Muh. Yusuf Syam, Eka Fitri Ramadani, Eliyah A M Sampetoding, Mohammad Syahril, Esther Sanda Manapa, Rahmat Mardzuki, "Prediksi Flight Delay Berbasis Algoritma Neural Network," Journal of Informatics, Electrical and Electronics Engineering, vol. 2, no. 1, pp. 26-30, 2022.
W. M. Shaban, A. H. Rabie, A. I. Saleh, and M. A. Abo-Elsoud, “Accurate detection of COVID-19 patients based on distance biased Naïve Bayes (DBNB) classification strategy,” Pattern Recognit., vol. 119, p. 108110, 2021
A. D. Wiratmoko et al., "Design of Potholes Detection as Road’s Feasibility Data Information Using Convolutional Neural Network(CNN)," in 2019 Int. Symp. Electron. Smart Devices (ISESD), Badung-Bali, Indonesia, Oct. 8–9, 2019. IEEE, 2019.
Roring, C. B., Mulyana, D. I., Lubis, Y. T., & Zamzami, A. R. (2022). Klasifikasi Tingkat Kematangan Buah Jambu Bol Berdasarkan Warna Kulit Menggunakkan Metode Naïve Bayes. Jurnal Pendidikan Tambusai, 6(1), 2938-2948.
Syafi’i, A. M., Ahadi, M. F., Rasyid, M. I., Adhinata, F. D., & Junaidi, A. (2021). Mendeteksi Kematangan Pada Buah Mangga Garifta Merah Dengan Transformasi Ruang Warna HSI. Journal of Applied Informatics and Computing, 5(2), 117-121.
Yulianto, D., Whidhiasih, R. N., & Maimunah, M. (2017). Klasifikasi Tahap Kematangan Pisang Ambon Berdasarkan Warna Menggunakan Naive Bayes. PIKSEL: Penelitian Ilmu Komputer Sistem Embedded and Logic, 5(2), 60-67.
Saputra, A. (2019). KLASIFIKASI PENGENALAN BUAH MENGGUNAKAN ALGORITMA NAIVE BAIYES. Jurnal RESISTOR (Rekayasa Sistem Komputer), 2(2), 83-88.
Mahran, A. A., Hapsari, R. K., & Nugroho, H. (2020). Penerapan Naive Bayes Gaussian Pada Klasifikasi Jenis Jamur Berdasarkan Ciri Statistik Orde Pertama. Network Engineering Research Operation, 5(2), 91-99.
Mustofa, H., & Mahfudh, A. A. (2019). Klasifikasi Berita Hoax Dengan Menggunakan Metode Naive Bayes. Walisongo Journal of Information Technology, 1(1), 1-12.
Fauzi, F. A., Furqon, M. T., & Yudistira, N. (2021). Klasifikasi jenis tanaman tembakau di Indonesia menggunakan Naïve Bayes dengan seleksi fitur information Gain. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer e-ISSN, 2548, 964X.
Saputra K dan Manik F.Y,2016, Klasifikasi Belimbing Menggunakan K-Nearest Neighbors (KNN) Berdasarkan Citra Red-Green- Blue (RGB), Prosiding SEMMAU 2016, Kupang, 17 September
Riska, S. Y. Klasifikasi Level Kematangan Tomat Berdasarkan Perbedaan Perbaikan Citra Menggunakan Rata-Rata RGB Dan Index Pixel. (2015b). Jurnal Ilmiah Teknologi Dan Informasia ASIA (JITIKA) Retrievedfrom http://lp3m.asia.ac.id/wpcontent/uploads/2015/11 /7.-Bu-Riska.pdf.
Han J, Kamber M, Pei J, 2012, Data Mining: Concepts and Techniques. 3th ed, New York (US): Morgan Kaufman Elsevier Academic Pr.
R. I. Borman Dan M. Wati, “Penerapan Data Maining Dalam Klasifikasi Data Anggota Kopdit Sejahtera Bandarlampung Dengan Algoritma Naïve Bayes,” Jurnal Ilmiah Fakultas Ilmu Komputer, Vol. 9, No. 1, Pp. 25-34, 2020.
B. S. Gandhi, D. A. Megawaty Dan D. Alita, “Aplikasi Monitoring Dan Penentuan Peringkat Kelas Menggunakan Naïve Bayes Classifier,” Jurnal Informatika Dan Rekayasa Perangkat Lunak (Jatika) , Vol. 2, No. 1, Pp. 54-63, 2020
S. E. Y. Putri Dan A. Surahman, “Penerapan Model Naive Bayes Untuk Memprediksi Potensi Pendaftaran Siswa Di Smk Taman Siswa Teluk Betung Berbasis Web,” Jurnal Informatika Dan Rekayasa Perangkat Lunak (Jatika) , Vol. 1, No. 1, Pp. 93-99, 2020.
Kusumadewi, S., 2003, Artificial Intellegence Teknik dan Aplikasi, Graha Ilmu, Yogyakarta.
Nugroho A dan Subahar, 2013, Klasifikasi Naïve Bayes Untuk Prediksi Kelahiran Pada Data Ibu Hamil. Berkala Mipa, Vol 23, Ed 3.
Prasetyo E, 2012, Data Mining : Konsep dan Aplikasi Menggunakan Matlab, Penerbit Andi, Yogyakarta
Tan PN, Steinbach M, Kumar V, 2005, Introduction to data mining, New York (US): Addison Wesley
C. Paramita, E. Hari Rachmawanto, C. Atika Sari, and D. R. Ignatius Moses Setiadi, “Klasifikasi Jeruk Nipis Terhadap Tingkat Kematangan Buah Berdasarkan Fitur Warna Menggunakan K-Nearest Neighbor,” Jurnal Informatika: Jurnal Pengembangan IT, vol. 4, no. 1, pp. 1–6, 2019, doi: 10.30591/jpit.v4i1.1267.
S. R. Raysyah, Veri Arinal, and Dadang Iskandar Mulyana, “Klasifikasi Tingkat Kematangan Buah Kopi Berdasarkan Deteksi Warna Menggunakan Metode Knn Dan Pca,” JSiI (Jurnal Sist. Informasi), vol. 8, no. 2, pp. 88–95, 2021, doi: 10.30656/jsii.v8i2.3638.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Optimasi Algoritma Nai?ve Bayes Untuk Klasifikasi Buah Apel Berdasarkan Fitur Warna RGB
ARTICLE HISTORY
How to Cite
Issue
Section
Copyright (c) 2023 M Afriansyah, Joni Saputra, Yuan Sa’adati, Valian Yoga Pudya Ardhana

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).