Optimasi Algoritma Nai?ve Bayes Untuk Klasifikasi Buah Apel Berdasarkan Fitur Warna RGB


Authors

  • M Afriansyah Universitas Qamarul Huda Badaruddin, Lombok Tengah, Indonesia
  • Joni Saputra Universitas Qamarul Huda Badaruddin, Lombok Tengah, Indonesia
  • Yuan Sa’adati Universitas Qamarul Huda Badaruddin, Lombok Tengah, Indonesia
  • Valian Yoga Pudya Ardhana Universitas Qamarul Huda Badaruddin, Lombok Tengah, Indonesia

DOI:

https://doi.org/10.47065/bulletincsr.v3i3.251

Keywords:

Apples; Classification; Naïve Bayes; RGB; Extraction Feature

Abstract

Apples are one type of fruit that is increasingly popular in Indonesia. This fruit is not only popular because it tastes good, but is also rich in nutrients and fiber which are beneficial for the health of the body. Along with the development of the agricultural industry in Indonesia, domestic apple production is also increasing. This study aims to classify types of apples based on RGB color using research methods that include apple image data collection, RGB feature extraction, data division with k-fold cross validation, classification model with Naive Bayes. This method utilizes color features taken from apple images as input to determine the appropriate class or type of apple. The test results show that the accuracy for the sweet level has a value of 100%, for the medium level it has a value of 86.66% and for sour it has a value of 80%. The average accuracy of the Naïve Bayes method is 88.88%. Classification results using the Naïve Bayes algorithm.

Downloads

Download data is not yet available.

References

A. Oikonomidis, C. Catal, and A. Kassahun, “Deep learning for crop yield prediction: a systematic literature review,” New Zeal. J. Crop Hortic. Sci., pp. 1–26, 2022.

V.Y.P. Ardhana, J. Saputra, and M. Afriansyah, "Klasifikasi Jenis Mangga Berdasarkan Tekstur Tulang Daun Menggunakan Metode Learning Vector Quantization (LVQ)," Journal of Computer System and Informatics (JoSYC), vol. 4, no. 1, pp. 220-228, 2022.

M. Rifai et al., "Dynamic time distribution system monitoring on traffic light using image processing and convolutional neural network method," IOP Conf. Series: Mater. Sci. Eng., vol. 1175, no. 1, p. 012005, Aug. 2021.

Y. Xu, Y. Zhou, P. Sekula, and L. Ding, “Machine learning in construction: From shallow to deep learning,” Dev. Built Environ., vol. 6, p. 100045, 2021.

Tommy Wijaya Sagala, Eliyah Acantha Manapa, Valian Yoga Pudya Ardhana, Godfried, "Perbandingan Implementasi Manajemen Pengetahuan pada," JTIM : Jurnal Teknologi Informasi dan Multimedia, vol. 1, no. 4, pp. 327-335 , 2020.

Nurul Salsabila Syam, et al, “Model Support Vector Machine untuk Prediksi pada Penggunaan Energi Listrik di Rumah Hemat Energi”, JI, vol. 1, no. 2, pp. 56-59, Sep. 2022.

M. Bibi etal., “Class association and attribute relevancy based imputation algorithm to reduce twitter data for optimal sentiment analysis,” IEEE Access, vol. 7, pp. 136535–136544, 2019

Valian Yoga Pudya Ardhana, Muh. Yusuf Syam, Eka Fitri Ramadani, Eliyah A M Sampetoding, Mohammad Syahril, Esther Sanda Manapa, Rahmat Mardzuki, "Prediksi Flight Delay Berbasis Algoritma Neural Network," Journal of Informatics, Electrical and Electronics Engineering, vol. 2, no. 1, pp. 26-30, 2022.

W. M. Shaban, A. H. Rabie, A. I. Saleh, and M. A. Abo-Elsoud, “Accurate detection of COVID-19 patients based on distance biased Naïve Bayes (DBNB) classification strategy,” Pattern Recognit., vol. 119, p. 108110, 2021

A. D. Wiratmoko et al., "Design of Potholes Detection as Road’s Feasibility Data Information Using Convolutional Neural Network(CNN)," in 2019 Int. Symp. Electron. Smart Devices (ISESD), Badung-Bali, Indonesia, Oct. 8–9, 2019. IEEE, 2019.

Roring, C. B., Mulyana, D. I., Lubis, Y. T., & Zamzami, A. R. (2022). Klasifikasi Tingkat Kematangan Buah Jambu Bol Berdasarkan Warna Kulit Menggunakkan Metode Naïve Bayes. Jurnal Pendidikan Tambusai, 6(1), 2938-2948.

Syafi’i, A. M., Ahadi, M. F., Rasyid, M. I., Adhinata, F. D., & Junaidi, A. (2021). Mendeteksi Kematangan Pada Buah Mangga Garifta Merah Dengan Transformasi Ruang Warna HSI. Journal of Applied Informatics and Computing, 5(2), 117-121.

Yulianto, D., Whidhiasih, R. N., & Maimunah, M. (2017). Klasifikasi Tahap Kematangan Pisang Ambon Berdasarkan Warna Menggunakan Naive Bayes. PIKSEL: Penelitian Ilmu Komputer Sistem Embedded and Logic, 5(2), 60-67.

Saputra, A. (2019). KLASIFIKASI PENGENALAN BUAH MENGGUNAKAN ALGORITMA NAIVE BAIYES. Jurnal RESISTOR (Rekayasa Sistem Komputer), 2(2), 83-88.

Mahran, A. A., Hapsari, R. K., & Nugroho, H. (2020). Penerapan Naive Bayes Gaussian Pada Klasifikasi Jenis Jamur Berdasarkan Ciri Statistik Orde Pertama. Network Engineering Research Operation, 5(2), 91-99.

Mustofa, H., & Mahfudh, A. A. (2019). Klasifikasi Berita Hoax Dengan Menggunakan Metode Naive Bayes. Walisongo Journal of Information Technology, 1(1), 1-12.

Fauzi, F. A., Furqon, M. T., & Yudistira, N. (2021). Klasifikasi jenis tanaman tembakau di Indonesia menggunakan Naïve Bayes dengan seleksi fitur information Gain. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer e-ISSN, 2548, 964X.

Saputra K dan Manik F.Y,2016, Klasifikasi Belimbing Menggunakan K-Nearest Neighbors (KNN) Berdasarkan Citra Red-Green- Blue (RGB), Prosiding SEMMAU 2016, Kupang, 17 September

Riska, S. Y. Klasifikasi Level Kematangan Tomat Berdasarkan Perbedaan Perbaikan Citra Menggunakan Rata-Rata RGB Dan Index Pixel. (2015b). Jurnal Ilmiah Teknologi Dan Informasia ASIA (JITIKA) Retrievedfrom http://lp3m.asia.ac.id/wpcontent/uploads/2015/11 /7.-Bu-Riska.pdf.

Han J, Kamber M, Pei J, 2012, Data Mining: Concepts and Techniques. 3th ed, New York (US): Morgan Kaufman Elsevier Academic Pr.

R. I. Borman Dan M. Wati, “Penerapan Data Maining Dalam Klasifikasi Data Anggota Kopdit Sejahtera Bandarlampung Dengan Algoritma Naïve Bayes,” Jurnal Ilmiah Fakultas Ilmu Komputer, Vol. 9, No. 1, Pp. 25-34, 2020.

B. S. Gandhi, D. A. Megawaty Dan D. Alita, “Aplikasi Monitoring Dan Penentuan Peringkat Kelas Menggunakan Naïve Bayes Classifier,” Jurnal Informatika Dan Rekayasa Perangkat Lunak (Jatika) , Vol. 2, No. 1, Pp. 54-63, 2020

S. E. Y. Putri Dan A. Surahman, “Penerapan Model Naive Bayes Untuk Memprediksi Potensi Pendaftaran Siswa Di Smk Taman Siswa Teluk Betung Berbasis Web,” Jurnal Informatika Dan Rekayasa Perangkat Lunak (Jatika) , Vol. 1, No. 1, Pp. 93-99, 2020.

Kusumadewi, S., 2003, Artificial Intellegence Teknik dan Aplikasi, Graha Ilmu, Yogyakarta.

Nugroho A dan Subahar, 2013, Klasifikasi Naïve Bayes Untuk Prediksi Kelahiran Pada Data Ibu Hamil. Berkala Mipa, Vol 23, Ed 3.

Prasetyo E, 2012, Data Mining : Konsep dan Aplikasi Menggunakan Matlab, Penerbit Andi, Yogyakarta

Tan PN, Steinbach M, Kumar V, 2005, Introduction to data mining, New York (US): Addison Wesley

C. Paramita, E. Hari Rachmawanto, C. Atika Sari, and D. R. Ignatius Moses Setiadi, “Klasifikasi Jeruk Nipis Terhadap Tingkat Kematangan Buah Berdasarkan Fitur Warna Menggunakan K-Nearest Neighbor,” Jurnal Informatika: Jurnal Pengembangan IT, vol. 4, no. 1, pp. 1–6, 2019, doi: 10.30591/jpit.v4i1.1267.

S. R. Raysyah, Veri Arinal, and Dadang Iskandar Mulyana, “Klasifikasi Tingkat Kematangan Buah Kopi Berdasarkan Deteksi Warna Menggunakan Metode Knn Dan Pca,” JSiI (Jurnal Sist. Informasi), vol. 8, no. 2, pp. 88–95, 2021, doi: 10.30656/jsii.v8i2.3638.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Optimasi Algoritma Nai?ve Bayes Untuk Klasifikasi Buah Apel Berdasarkan Fitur Warna RGB

Dimensions Badge

ARTICLE HISTORY

Published: 2023-04-30

Abstract View: 1658 times
PDF Download: 1654 times

How to Cite

Afriansyah, M., Saputra, J., Sa’adati, Y., & Valian Yoga Pudya Ardhana. (2023). Optimasi Algoritma Nai?ve Bayes Untuk Klasifikasi Buah Apel Berdasarkan Fitur Warna RGB. Bulletin of Computer Science Research, 3(3), 242-249. https://doi.org/10.47065/bulletincsr.v3i3.251

Issue

Section

Articles

Most read articles by the same author(s)